sześciociosiowy kontroler CNC +/-10V

INSTRUKCJA UŻYTKOWNIKA

Dotyczy wersji sprzętowej : v2
Dotyczy wersji firmware’u : v2.030

Rev 1.0

© copyright 2013 – CS-Lab s.c.
Spis treści

1 Informacje ogólne ... 5
 1.1 Oznaczenia używane w niniejszej instrukcji ... 5
 1.2 Zawartość opakowania ... 6
 1.3 Zgodność z normami ... 7
 1.4 Dane techniczne ... 7

2 Bezpieczeństwo ... 8
 2.1 Przykład bezpośredniego podłączenia sygnału E-Stop .. 9
 2.2 Przykład podłączenia sygnału E-Stop z użyciem modułu PILZ ... 10

3 Zalecenia montażu mechanicznego ... 11
 3.1 przykłady rozmieszczenia componentów w szafie sterowniczej ... 11
 3.1.1 Blokowy schemat poglądowy .. 11
 3.1.2 Szafa sterownicza wykonana przez firmę CS-Lab s.c. ... 12

4 Złącza, kontroli i instalacja elektryczna urządzenia .. 13
 4.1 Rozmieszczenie złąc na urządzeniu .. 13
 4.2 Złącze wejść/wyjść analogowych .. 14
 4.2.1 Sygnały na przejściówce Terminal-Block .. 15
 4.2.2 Przykład – podłączenie i konfiguracja potencjometrów FRO i SRO .. 16
 4.3 Złącze wejść enkoderowych (0 / 1 / 2) ... 17
 4.3.1 Sygnały na przejściówce Terminal-Block .. 17
 4.3.2 Przykład – podłączenie enkodera do kanału Ch0 ... 18
 4.4 Złącze wejść enkoderowych (3 / 4 / 5) ... 19
 4.4.1 Sygnały na przejściówce Terminal-Block .. 19
 4.5 Złącze wejść cyfrowych (0-11) ... 20
 4.5.1 Konstrukcja obwodów wejściowych ... 21
 4.5.2 Sygnały na przejściówce Terminal-Block .. 21
 4.5.3 Przykłady podłączenia sygnałów wejściowych ... 22
 4.6 Złącze wejść cyfrowych (12-23) .. 24
 4.6.1 Sygnały na przejściówce Terminal-Block .. 24
 4.7 Złącze wyjść cyfrowych (0-15) ... 25
 4.7.1 Konstrukcja obwodów wyjściowych ... 26
 4.7.2 Sygnały na przejściówce Terminal-Block .. 26
 4.7.3 Przykład – sygnał załączania wrzeciona .. 27
 4.8 Złącze modułów rozszerzeń ... 28
 4.9 Złącze zasilania .. 29
 4.10 Złącze komunikacyjne – Ethernet ... 29
 4.11 Zalecane przewody ... 30
 4.12 Znaczenie kontrolek sygnalizacyjnych LED .. 31
 4.12.1 Rodzaje i umiejscowienie kontrolek LED ... 31
 4.12.2 Opis kontrolek stanu - STATx .. 32
 4.13 Przykład - poglądowy schemat plotera trziosiowego (XYZ) .. 33
 4.13.1 Zasilanie .. 33
 4.13.2 Podłączenie serwonapędów ... 34
 4.13.3 Wyłączniki krańcowe oraz sygnał stopu awaryjnego E-STOP ... 35
 4.13.4 Podłączenie falownika, z użyciem wyjścia analogowego .. 36
 4.13.5 Automatyczne sterowanie zasilaniem napędów (HV) ... 37
 4.14 Zalecenia doboru napędów (driverów silników) ... 38

5 Dokładne bazowanie z użyciem sygnału „indeks” enkodera ... 39
 5.1 Załączenie bazowania z „indeksem” .. 39

6 Podłączenie i konfiguracja sieci LAN ... 40
 6.1 Bezpośrednie połączenie z komputerem PC ... 40
 6.1.1 Konfiguracja Windows XP .. 40
 6.1.2 Konfiguracja Windows 7 .. 41
 6.2 Sieć lokalna z router’em i DHCP. ... 44

7 Program Mach3 – informacje ogólne .. 45
8.1 Zalecana konfiguracja komputera PC .. 47
9 Instalacja oprogramowania ... 48
 9.1 Instalacja programu Mach3 ... 48
 9.2 Instalacja pakietu Microsoft .Net (starsze systemy operacyjne) 49
 9.3 Instalacja oprogramowania CSMIO/IP ... 49
 9.4 Prawa administratora w Windows® Vista i Windows® 7 51
10 Konfiguracja programu Mach3 ... 52
 10.1 Utworzenie profilu konfiguracji ... 52
 10.2 Pierwsze uruchomienie programu .. 53
 10.3 Konfiguracja osi używanych w maszynie .. 55
 10.4 Konfiguracja cyfrowych sygnałów wejściowych.. 56
 10.5 Konfiguracja cyfrowych sygnałów wyjściowych 58
 10.6 Konfiguracja wrzeciona oraz chłodzenia ... 60
 10.6.1 Konfiguracja wyjścia analogowego ... 60
 10.6.2 Problematyczna funkcja PWM Control ... 61
 10.7 Konfiguracja rozdzielczości, prędkości i przyspieszeń 62
 10.8 Konfiguracja kierunków, bazowania oraz limitów programowych 64
 10.9 Funkcje konfiguracyjne w oknie plugin’a ... 66
 10.9.1 Funkcje specjalne osi ... 66
 10.9.2 Spindle - Konfiguracja wrzeciona ... 69
 10.9.3 Override sources – wybór źródła korekcji prędkości posuwu i obrotów wrzeciona .. 70
 10.9.4 Plasma – Funkcje dodatkowe wycinarek plazmowych 71
 10.9.5 Misc IO – Funkcje specjalne związane z we/wy 71
 10.9.6 Other – pozostałe funkcje plugin’a .. 72
 10.10 Wybór jednostek cale/㎜ .. 74
 10.11 Wybrane parametry z okna General Config ... 74
11 Regulator PID .. 76
 11.1 Czym jest regulator PID .. 76
 11.2 Działanie poszczególnych członów regulatora .. 77
 11.2.1 Człon proporcjonalny – P ... 77
 11.2.2 Człon całkujący – I .. 77
 11.2.3 Człon różniczujący – D .. 78
 11.2.4 „Szósty” zmysł – czyli tajemniczy parametr KVFF 78
 11.3 Rzeczywisty regulator w CSMIO/IP-A ... 79
 11.4 Kolejność strojenia regulatorów ... 79
 11.5 Okno strojenia „PID Regulator Tuning” .. 80
 11.6 Procedura ręcznego strojenia regulatora PID w CSMIO/IP-A 83
 11.7 Strojenie PID – uwagi praktyczne ... 85
 11.7.1 Oś zależna ... 85
 11.7.2 Oś z listwami zębatymi (zęby proste) .. 85
 11.7.3 Głośne dźwięki przy postoju ... 86
 11.7.4 Nie udaje się zacząć strojenia, bo nie udaje się poruszyć w ogóle osią 86
 11.7.5 Oś po załączeniu szarfie lub zaczyna poruszać się z maksymalną prędkością 86
 11.7.6 Oś nie daje się dobre nastroić .. 86
 11.8 Autotuning – Automatyczne strojenie regulatora PID 87
12 Pierwsze testy ... 89
 12.1 Sprawdzenie sygnałów wejściowych ... 89
 12.2 Sprawdzenie wyskałowania osi i kierunków ruchu 90
 12.3 Test bazowania (HOMING) oraz kraniców programowych 91
 12.3.1 Pierwsze bazowanie .. 91
 12.3.2 Kranicówki programowe SoftLimit .. 91
 12.4 Test wrzeciona i chłodzenia .. 92
13 Przykładowa obróbka krok po kroku ... 93
 13.1 Przygotowanie projektu i plików G-Code .. 93
 13.2 Przygotowanie obrabiarki i Mach’a .. 97
13.3 Zaczynamy obróbkę.. 99
14 Kilka uwag praktycznych o programie Mach3 i CSMIO/IP-A... 101
15 Makro VisualBasic .. 103
15.1 Automatyczny pomiar długości narzędzia... 103
15.1.1 Konfiguracja.. 103
15.2 Makro automatycznej wymiany narzędzi... 105
Dodatek A – Przykład konfiguracji osi zależnej ... 106
Zdefiniowanie używanych osi w programie Mach3 .. 106
Wyskalowanie i konfiguracja osi .. 106
Złączenie i wybór osi używanej jako slave ... 106
Wyłączniki krańcowe LIMIT oraz bazujące HOME.. 107
Ustawię kierunków osi .. 107
Test posuwu ręcznego.. 107
Automatyczny odczyt różnicy pozycji wyłączników HOME .. 107
Złączenie trybu korekcji geometrii ... 108
Dodatek B – Aktualizacja oprogramowania CSMIO/IP-A .. 109
Jak sprawdzić posiadaną wersję oprogramowania .. 109
Aplikacja aktualizująca (uploader) .. 109
Aktualizacja pliku wtyczki (plugin'a) .. 110
Kontrola poprawności aktualizacji ... 110
1 Informacje ogólne

Produkt CSMIO/IP-A został stworzony z myślą o profesjonalnych odbiorcach, którzy za niewygodną cenę chcą wyposażyć swoją obrabiarkę w wydajny, stabilny i elastyczny system sterowania CNC.

Głównym założeniem projektowym była stabilność działania – stąd połączenie z komputerem PC poprzez sieć ETHERNET, której warstwa fizyczna jest galwanicznie izolowana, a stosowane protokoły zapewniają poprawną i szybką transmisję nawet w trudnym środowisku przemysłowym. Praktycznie żadne inne interfejsy komunikacyjne nie zapewniają ciągłości transmisji i niezawodności na tak wysokim poziomie jak ETHERNET. Z resztą z tego widać powodu jest to obecnie światowy standard szybkiej komunikacji cyfrowej.

Kolejnym ważnym założeniem była prostota montażu. CSMIO/IP-A nie wymaga żadnej zewnętrznej elektroniki do poprawnego działania. Sygnały wejścia/wyjścia są wewnętrznie izolowane optycznie, filtrowane, zabezpieczone przed zwarciami, przegrzaniem itp. Oczywiście wszystkie sygnały we/wy dostosowane są też do standardu przemysłowego 24V. Całość zamknięta jest w kompaktowej obudowie, montowanej na szynie DIN, co jeszcze bardziej upraszcza i skraca czas montażu mechanicznego i elektrycznego w szafie sterowniczej.

Produkt CSMIO/IP-A współpracuje z programem Mach3 z uwagi na jego atrakcyjną cenę, popularność i ogromne możliwości dopasowania do specyficznych wymagań. Wychodząc naprzeciw użytkownikom, którzy preferują standard +/-10V sterowania serwonapędami, CSMIO/IP-A został wyposażony w taki właśnie interfejs, a bardzo szybkie wejścia enkoderowe pozwalają w pełni wykorzystać enkodery o dużej liczbie impulsów na obrót, pozwalając osiągać precyzję i prędkości dotychczas niedostępne w tym sektorze cenowym.

1.1 Oznaczenia używane w niniejszej instrukcji

⚠️ Oznacza potencjalne niebezpieczeństwo, ryzyko odniesienia obrażeń ciała.

ℹ️ Oznacza użyteczną informację, wskazówkę.

⚠️ Oznacza ostrzeżenie, niezastosowanie się może prowadzić do niewłaściwego funkcjonowania, bądź uszkodzenia urządzenia.
1.2 Zawartość opakowania

Urządzenie CSMIO/IP-A dostarczane jest w kartonowym pudełku wraz z przejściówkami DB† Terminal Block dla wygodniejszego podłączania przewodów w szafie sterowniczej. Poniżej szczegółowa zawartość opakowania:

- Sterownik CNC CSMIO/IP-A
- Przejściówka 3x DB25† Terminal block (2szt.)
- Przewód połączeniowy Ethernet
- Taśma połączeniowa DB25 (6 szt.)
- Wtyczka zasilania „Phoenix” 3pin
- Płyta CD z elektroniczną wersją instrukcji obsługi oraz oprogramowaniem (sprawdź na stronie http://www.cs-lab.eu czy nie ma nowszej wersji oprogramowania)

W przypadku stwierdzenia braku któregokolwiek z wyżej wymienionych elementów, proszę kontaktować się z dystrybutorem, u którego dokonali Państwo zakupu urządzenia.
1.3 Zgodność z normami
Sterowniki CSMIO/IP-A zostały zaprojektowane i wykonane zgodnie z normami krajowymi i międzynarodowymi dotyczącymi przemysłowych systemów sterowania wykonanych na bazie elementów elektronicznych:

- Szczegółowe wymagania dla sterowników programowalnych: charakterystyka pracy, odporność na wstrząsy, bezpieczeństwo, itp. EN61131-2 (IEC1131-2), CSA 22.2, UL508
- Zgodność z Wytycznymi Europejskimi (niskie napięcie, poziom zakłóceń elektromagnetycznych Electromagnetic Compatibility) zasady oznaczania znakiem bezpieczeństwa CE.
- Elektryczne i niepalne właściwości materiałów izolacyjnych: UL 746C, UL 94, itd.
- Produkt wykonany w technologii bezołowiowej, zgodny z normami RoHS.

![RoHS Compliant](image)

1.4 Dane techniczne

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilość wejść cyfrowych</td>
<td>24</td>
</tr>
<tr>
<td>Ilość wyjść cyfrowych</td>
<td>16</td>
</tr>
<tr>
<td>Ilość wejść analogowych</td>
<td>4</td>
</tr>
<tr>
<td>Ilość wyjść analogowych 0-10V</td>
<td>2</td>
</tr>
<tr>
<td>Ilość wyjść analogowych +/-10V</td>
<td>6</td>
</tr>
<tr>
<td>Ilość wejść enkoderowych</td>
<td>6</td>
</tr>
<tr>
<td>Napięcie zasilania</td>
<td>24VDC +/-10%</td>
</tr>
<tr>
<td>Pobierana moc</td>
<td>5W</td>
</tr>
<tr>
<td>Maksymalne napięcie na liniach we/wy</td>
<td>30VDC</td>
</tr>
<tr>
<td>Maksymalne obciążenie linii wyjściowej</td>
<td>250mA</td>
</tr>
<tr>
<td>Zakres napięcia na wejściach analogowych</td>
<td>0-10VDC</td>
</tr>
<tr>
<td>Maksymalne obciążenie wyjść analogowych</td>
<td>5mA</td>
</tr>
<tr>
<td>Typ sterowania napędów osi</td>
<td>Analog +/-10V</td>
</tr>
<tr>
<td>Maksymalna częstотliwość sygnału enkodera</td>
<td>6MHz</td>
</tr>
<tr>
<td>Typ enkodera</td>
<td>Inkrementalny TTL</td>
</tr>
<tr>
<td>Rodzaj sygnału enkodera</td>
<td>Różnicowy</td>
</tr>
<tr>
<td>Połączenie z PC</td>
<td>Ethernet 10/100Mb</td>
</tr>
<tr>
<td>Zakres temperatury otoczenia</td>
<td>0°C do +60°C</td>
</tr>
<tr>
<td>Wilgotność względna</td>
<td>10% do 95% (bez zjawiska skraplania)</td>
</tr>
</tbody>
</table>

Parametr konfiguracyjny „Kernel Speed” w programie Mach3 nie ma żadnego wpływu na prędkość pracy sterowników CSMIO/IP.
2 Bezpieczeństwo

Urządzenie CSMIO/IP-A zasilane jest napięciem bezpiecznym 24V. Linie sterujące we/wy są izolowane optycznie, również połączenie z komputerem PC jest izolowane galwanicznie. Urządzenie nie stanowi więc bezpośredniego zagrożenia dla zdrowia i życia użytkownika.

Projektując kompletny system sterowania (szafę sterowniczą) należy jednak zwrócić uwagę na kilka kwestii, tak aby cały system nie stwarzał zagrożenia podczas użytkowania.

Stosuj zawsze styki typu NC (NormalClosed – normalnie zwarte) dla wyłączników krańcowych i wyłącznika bezpieczeństwa. Dzięki temu awaria okablowania, czy np. rozłączenie wtyczki spowoduje zatrzymanie maszyny.

Należy zwrócić szczególną uwagę na obwód stopu awaryjnego. System sterowania musi być zaprojektowany w taki sposób, by po naciśnięciu grzybka wyłącznika awaryjnego, sterowana maszyna bezwzględnie zatrzymała ruch we wszystkich osiach. Należy tutaj wziąć pod uwagę również możliwość awarii poszczególnych składowych systemu takich jak główny sterownik, czy napędy osi.

Sterownik CSMIO/IP-A w przypadku stanu aktywnego na linii wejściowej zdefiniowanej jako E-Stop zatrzymuje ruch na wszystkich kanałach wyjściowych w przeciągu 1ms.
2.1 Przykład bezpośredniego podłączenia sygnału E-Stop

W powyższym przykładzie zastosowano połączenie bezpośrednie sygnałów awaryjnych. Podłączenie takie cechuje się prostotą, jednocześnie zapewniając zadowalający stopień bezpieczeństwa.

Oczywiście najprostszym sposobem jest podłączenie sygnału ESTOP’u tylko i wyłącznie do sterownika CSMIO/IP, jednak tracimy wtedy podwójne zabezpieczenie i rozwiązanie takie nie jest już tak pewne.

Jako wyłącznik (grzybek) stopu awaryjnego stosuj zawsze wyłączniki specjalnie do tego przeznaczone. Mają one inną konstrukcję i zapewniają praktycznie w 100%, że obwód zostanie rozłączony po wciśnięciu grzybka. Stosowanie zwyczajnych łączników NC jest niebezpieczne. Warto też stosować łączniki renomowanych firm. Są one droższe, ale ich jakość znacznie lepsza.
2.2 Przykład podłączenia sygnału E-Stop z użyciem modułu PILZ

Powyżej przedstawiono przykład podłączenia sygnału E-Stop do sterownika CSMIO/IP-A oraz napędów osi, z użyciem przekaźnika bezpieczeństwa firmy PILZ o symbolu PNOZ X7 24V. Przycisk S1 to reset (załączenie przekaźnika bezpieczeństwa), S2 to grzybek stopu awaryjnego.

Użyty moduł posiada jeden tor wejściowy i z uwagi na to wszystkie źródła alarmowe podpięte są do tego wejścia (A1). Oprócz wspomnianego wyłącznika grzybkowego(S2) są tu styki rozwierne NC1 i NC2, które mogą być np. czujnikami otwarcia osłony oraz szafy sterowniczej. Poza tym szeregowo wpięte są sygnały FAULT napędów. Dwa tory wyjściowe przekaźnika bezpieczeństwa wykorzystano jako sygnał E-Stop dla sterownika CSMIO/IP-A oraz napędów osi.

Takie połączenie zapewnia zatrzymanie maszyny w przypadku wystąpienia awarii na którejkolwiek osi (sygnały FAULT napędów), wciśnięcia grzybka stopu awaryjnego i otwarcia szafy lub osłony. Rozdzielenie kanałów wyjściowych przekaźnika bezpieczeństwa podwójnie zabezpiecza system i znacznie zwiększa niezawodność całego układu.
3 Zalecenia montażu mechanicznego

Sterownik CSMIO/IP-A oraz moduły przyłączeniowe DB Terminal block zaprojektowane zostały do montażu na standardowej szynie DIN. Jest to najszybszy i najlepszy sposób montażu.

Sterownik pobiera bardzo niewiele energii elektrycznej i wydziela znikomą ilość ciepła. Dzięki aluminiowej obudowie znajdującej się wewnątrz elektronika ma zapewnione odpowiednie chłodzenie, nawet gdyby temperatura otoczenia dochodziła do 40°C.

Jeśli chodzi o sam sterownik, nie ma specjalnych zaleceń dotyczących wentylacji czy minimalnych odległości. Z reguły jednak oprócz sterownika w szafie sterowniczej znajdują się jeszcze falowniki, zasilacze, napędy silników – te komponenty wydzielają dużo ciepła, więc należy zawsze pamiętać o prawidłowym ich rozmieszczeniu i zapewnieniu należytej wentylacji szafy.

3.1 przykłady rozmieszczenia komponentów w szafie sterowniczej.

3.1.1 Blokowy schemat poglądowy
3.1.2 Szafa sterownicza wykonana przez firmę CS-Lab s.c.

Podczas montażu mechanicznego i elektrycznego zalecana jest szczególna staranność. Źle dokręcony przewód może być przyczyną wielu kłopotów, trudne też może być znalezienie tego typu usterki podczas uruchamiania/użytkowania systemu.

Na zdjęciu widoczny jest również sterownik CSMIO/IP-S (po prawej stronie). Jest to zdjęcie skrzynki sterowniczej używanej do testów nowych wersji oprogramowania. Okablowanie zostało zdublowane, tak by łatwo przełączać się pomiędzy modelem IP-S i IP-A.
4 Złącza, kontrolki oraz instalacja elektryczna urządzenia

4.1 Rozmieszczenie złączy na urządzeniu

W dalszych podrozdziałach szczegółowo opisano sygnały na poszczególnych złączach.

Moduły przejściowe DB† Terminal block mają taką samą numerację wyprowadzeń jak złącza DB w urządzeniu CSMIO/IP-A.

Przykład: pin 15 złącza DB25 łączy się z wyprowadzeniem nr 15 na terminal block.
4.2 Złącze wejść/wyjść analogowych

<table>
<thead>
<tr>
<th>Nr wyprowadzenia</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wyjście analogowe Ch0 (+/-10V)</td>
</tr>
<tr>
<td>2</td>
<td>Wyjście analogowe Ch1 (+/-10V)</td>
</tr>
<tr>
<td>3</td>
<td>Wyjście analogowe Ch2 (+/-10V)</td>
</tr>
<tr>
<td>4</td>
<td>Wyjście analogowe Ch3 (+/-10V)</td>
</tr>
<tr>
<td>5</td>
<td>Wyjście analogowe Ch4 (+/-10V)</td>
</tr>
<tr>
<td>6</td>
<td>Wyjście analogowe Ch5 (+/-10V)</td>
</tr>
<tr>
<td>7</td>
<td>Wyjście analogowe 0 (0-10V)</td>
</tr>
<tr>
<td>8</td>
<td>Wyjście analogowe 1 (0-10V)</td>
</tr>
<tr>
<td>9</td>
<td>Wejście analogowe 0</td>
</tr>
<tr>
<td>10</td>
<td>Wejście analogowe 1</td>
</tr>
<tr>
<td>11</td>
<td>Wejście analogowe 2</td>
</tr>
<tr>
<td>12</td>
<td>Wejście analogowe 3</td>
</tr>
<tr>
<td>13</td>
<td>10V (max. 50mA)</td>
</tr>
<tr>
<td>14</td>
<td>GND Ch0</td>
</tr>
<tr>
<td>15</td>
<td>GND Ch1</td>
</tr>
<tr>
<td>16</td>
<td>GND Ch2</td>
</tr>
<tr>
<td>17</td>
<td>GND Ch3</td>
</tr>
<tr>
<td>18</td>
<td>GND Ch4</td>
</tr>
<tr>
<td>19</td>
<td>GND Ch5</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
</tr>
<tr>
<td>24</td>
<td>GND</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
</tr>
</tbody>
</table>

Domyślnie osie przypisane są kolejno do kanałów X‡ Ch0 / Y‡ Ch1 / Z‡ Ch2 ... C‡ Ch5. Można to zmienić w konfiguracji plugin’a.

Chcąc podłączyć sygnał analogowy z generatora plazmowego, należy pamiętać, że powinien to być sygnał galwanicznie izolowany!

Podłączenie z użyciem prostego dzielnika napięcia nie chroni przed przepięciami i może doprowadzić do uszkodzenia sterownika.

Ważne: Upewnij się, że wejścia analogowe do serwonapędów (Ch0, Ch1, Ch2, Ch3, Ch4, Ch5) podłączasz zawsze z dedykowaną masą (GND Ch0, GND Ch1...). W przeciwnym razie serwonapęd nie będzie pracował prawidłowo.

Uważaj by nie przekroczyć dopuszczalnego napięcia 10V na wejściach analogowych. Może spowodować to uszkodzenie urządzenia.

Uważaj, by nie przeciążyć wyjścia napięcia 10V. Jego dopuszczalna obciążalność to 50mA.

Chcąc podłączyć sygnał analogowy z generatora plazmowego, należy pamiętać, że powinien to być sygnał galwanicznie izolowany!

Podłączenie z użyciem prostego dzielnika napięcia nie chroni przed przepięciami i może doprowadzić do uszkodzenia sterownika.
4.2.1 Sygnały na przejściówce Terminal-Block

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wy An. Ch0</td>
<td>Wy An. Ch1</td>
<td>Wy An. Ch2</td>
<td>Wy An. Ch3</td>
<td>Wy An. Ch4</td>
<td>Wy An. Ch5</td>
<td>Wy An. 0</td>
<td>Wy An. 1</td>
<td>Wy An. 0</td>
<td>We An. 1</td>
<td>We An. 2</td>
<td>We An. 3</td>
<td>10V</td>
<td></td>
</tr>
<tr>
<td>GND Ch0</td>
<td>GND Ch1</td>
<td>GND Ch2</td>
<td>GND Ch3</td>
<td>GND Ch4</td>
<td>GND Ch5</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

Domyślnie osie przyporządkowane są do kolejnych kanałów analogowych: X♀ Ch0 / Y♀ Ch1 / itd. Wpisane w programie Mach3 nr pinów w oknie „Port&Pins” w zakładce „Motor Outputs” nie mają żadnego znaczenia. Chcąc przypisać do osi inne nr kanałów należy zrobić to w konfiguracji plugin’a: menu „Config‡ Config Plugins‡ CONFIG”.
4.2.2 Przykład – podłączenie i konfiguracja potencjometrów FRO i SRO

Poniżej znajduje się przykład podłączenia i konfiguracji potencjometrów do regulacji korekcji prędkości posuwu i obrotów wrzeciona.

Jak widać na schemacie, wygodne jest wyprowadzenie 10V na złączu analogowym – dzięki temu nie potrzebujemy zewnętrznego zasilania dla potencjometrów. Potencjometr 1 został podłączony do wejścia analogowego nr 0, a potencjometr 2 do wejścia analogowego nr 1. Po podłączeniu, można dokonać kontroli, poprzez podgląd wejść analogowych w oknie diagnostycznym – menu „PlugIn Control” CSMIO_IP plugin”, zakładka „Analog IO”.

Jeśli wartości na wejściach analogowych zmieniają się wraz z położeniem pokrętek potencjometrów, pozostaje jedynie skonfigurować plugin. Otwieramy okno konfiguracyjne – menu „Config PlugIns CONFIG”. Wybieramy zakładkę „Override Src.”.

Wybieramy „CSMIO-IP AIN 0” dla „Feed rate override” – czyli dla regulacji prędkości posuwu używany będzie potencjometr POT.1.

Dla „Spindle speed override” wybieramy „CSMIO-IP AIN 1”, czyli za regulację obrotów wrzeciona odpowiadać będzie potencjometr POT.2.

Na koniec klikamy przycisk „Save” by zapamiętać ustawienia.
4.3 Złącze wejść enkoderowych (0 / 1 / 2)

<table>
<thead>
<tr>
<th>Nr wyprowadzenia</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enc. Ch0 A+</td>
</tr>
<tr>
<td>2</td>
<td>Enc. Ch0 B+</td>
</tr>
<tr>
<td>3</td>
<td>Enc. Ch0 I+</td>
</tr>
<tr>
<td>4</td>
<td>+5V</td>
</tr>
<tr>
<td>5</td>
<td>Enc. Ch1 A+</td>
</tr>
<tr>
<td>6</td>
<td>Enc. Ch1 B+</td>
</tr>
<tr>
<td>7</td>
<td>Enc. Ch1 I+</td>
</tr>
<tr>
<td>8</td>
<td>+5V</td>
</tr>
<tr>
<td>9</td>
<td>Enc. Ch2 A+</td>
</tr>
<tr>
<td>10</td>
<td>Enc. Ch2 B+</td>
</tr>
<tr>
<td>11</td>
<td>Enc. Ch2 I+</td>
</tr>
<tr>
<td>12</td>
<td>+5V</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
</tr>
<tr>
<td>14</td>
<td>Enc. Ch0 A-</td>
</tr>
<tr>
<td>15</td>
<td>Enc. Ch0 B-</td>
</tr>
<tr>
<td>16</td>
<td>Enc. Ch0 I-</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>Enc. Ch1 A-</td>
</tr>
<tr>
<td>19</td>
<td>Enc. Ch1 B-</td>
</tr>
<tr>
<td>20</td>
<td>Enc. Ch1 I-</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
</tr>
<tr>
<td>22</td>
<td>Enc. Ch2 A-</td>
</tr>
<tr>
<td>23</td>
<td>Enc. Ch2 B-</td>
</tr>
<tr>
<td>24</td>
<td>Enc. Ch2 I-</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
</tr>
</tbody>
</table>

Zwrócić szczególną uwagę, by nie przekroczyć dopuszczalnego napięcia (5VDC) na liniach wejściowych. Mogłoby to spowodować uszkodzenie urządzenia.

Domyślnie osie przypisane są kolejno do kanałów X: Ch0 / Y: Ch1 / Z: Ch2 ... C: Ch5. Można to zmienić w konfiguracji plugin’a.

O ile oznaczenia sygnałów „A, B" są raczej standardem, o tyle sygnał indeksu „I" producenci enkoderów oznaczają na różne sposoby: „Z, C, ... itp.”

4.3.1 Sygnały na przejściówce Terminal-Block

4.3.2 Przykład - podłączenie enkodera do kanału Ch0

Jak widać na poniższym przykładzie, choć enkoder wymaga wielu przewodów, to zasada jest prosta i podłączenie nie jest trudne. Podłączenie należy wykonać jednak starannie, by ustrzec się przed ewentualnymi późniejszymi przykrymi niespodziankami.

Na przykładzie przedstawiony został przypadek, gdy do wejścia enkodowego podłączony jest bezpośrednio enkoder silnika. W przypadku stosowania napędów serwo AC, do wejścia enkodowego CSMIO/IP-A podłącza się wyjście enkoderowe z serwo-wzmocniacza. Czyli podłączenie w przypadku serwo AC wygląda następująco:

[Enkoder silnika]‡ [serwo-wzmocniacz(we)]
[serwo-wzmocniacz(wy)]‡ [Sterownik CSMIO/IP-A]

Ekranowanie przewodu enkodowego powinno być łączone jak najbliżej sterownika CSMIO/IP i być podłączone tylko w jednym punkcie.

Kolory „przewodów” na powyższym schemacie są przypadkowe i proszę się nimi nie sugerować.

Proszę zwrócić uwagę na to by sygnały były prowadzone przewodem tzw. skrętką oraz by nie mieszać sygnałów w parach przewodów, czyli nie podłączać do jednej pary np. sygnałów A+, B- itp. Spowoduje to nieprawidłowości w pracy obrabiarki, których przyczynę może być później trudno wykryć.
4.4 Złącze wejść enkoderowych (3 / 4 / 5)

<table>
<thead>
<tr>
<th>Nr wyprowadzenia</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enc. Ch3 A+</td>
</tr>
<tr>
<td>2</td>
<td>Enc. Ch3 B+</td>
</tr>
<tr>
<td>3</td>
<td>Enc. Ch3 I+</td>
</tr>
<tr>
<td>4</td>
<td>+5V</td>
</tr>
<tr>
<td>5</td>
<td>Enc. Ch4 A+</td>
</tr>
<tr>
<td>6</td>
<td>Enc. Ch4 B+</td>
</tr>
<tr>
<td>7</td>
<td>Enc. Ch4 I+</td>
</tr>
<tr>
<td>8</td>
<td>+5V</td>
</tr>
<tr>
<td>9</td>
<td>Enc. Ch5 A+</td>
</tr>
<tr>
<td>10</td>
<td>Enc. Ch5 B+</td>
</tr>
<tr>
<td>11</td>
<td>Enc. Ch5 I+</td>
</tr>
<tr>
<td>12</td>
<td>+5V</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
</tr>
<tr>
<td>14</td>
<td>Enc. Ch3 A-</td>
</tr>
<tr>
<td>15</td>
<td>Enc. Ch3 B-</td>
</tr>
<tr>
<td>16</td>
<td>Enc. Ch3 I-</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>Enc. Ch4 A-</td>
</tr>
<tr>
<td>19</td>
<td>Enc. Ch4 B-</td>
</tr>
<tr>
<td>20</td>
<td>Enc. Ch4 I-</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
</tr>
<tr>
<td>22</td>
<td>Enc. Ch5 A-</td>
</tr>
<tr>
<td>23</td>
<td>Enc. Ch5 B-</td>
</tr>
<tr>
<td>24</td>
<td>Enc. Ch5 I-</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
</tr>
</tbody>
</table>

Zwróć szczególną uwagę, by nie przekroczyć dopuszczalnego napięcia (5VDC) na liniach wejściowych. Mogłoby to spowodować uszkodzenie urządzenia.

Domyślnie osie przypisane są kolejno do kanałów X‡ Ch0 / Y‡ Ch1 / Z‡ Ch2 ... C‡ Ch5. Można to zmienić w konfiguracji plugin’a.

O ile oznaczenia sygnałów „A, B” są raczej standardem, o tyle sygnał indeksu „I” producenci enkoderów oznaczają na różne sposoby: „Z, C, ... itp.”

4.4.1 Sygnały na przejściówce Terminal-Block

4.5 Złącze wejść cyfrowych (0-11)

<table>
<thead>
<tr>
<th>Nr wyprowadzenia</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wejście 0 (+)</td>
</tr>
<tr>
<td>2</td>
<td>Wejście 1 (+)</td>
</tr>
<tr>
<td>3</td>
<td>Wejście 2 (+)</td>
</tr>
<tr>
<td>4</td>
<td>Wejście 3 (+)</td>
</tr>
<tr>
<td>5</td>
<td>Wejście 4 (+)</td>
</tr>
<tr>
<td>6</td>
<td>Wejście 5 (+)</td>
</tr>
<tr>
<td>7</td>
<td>Wejście 6 (+)</td>
</tr>
<tr>
<td>8</td>
<td>Wejście 7 (+)</td>
</tr>
<tr>
<td>9</td>
<td>Wejście 8 (+)</td>
</tr>
<tr>
<td>10</td>
<td>Wejście 9 (+)</td>
</tr>
<tr>
<td>11</td>
<td>Wejście 10 (+)</td>
</tr>
<tr>
<td>12</td>
<td>Wejście 11 (+)</td>
</tr>
<tr>
<td>13</td>
<td>Nie używane (GND)</td>
</tr>
<tr>
<td>14</td>
<td>Wejście 0 (-)</td>
</tr>
<tr>
<td>15</td>
<td>Wejście 1 (-)</td>
</tr>
<tr>
<td>16</td>
<td>Wejście 2 (-)</td>
</tr>
<tr>
<td>17</td>
<td>Wejście 3 (-)</td>
</tr>
<tr>
<td>18</td>
<td>Wejście 4 (-)</td>
</tr>
<tr>
<td>19</td>
<td>Wejście 5 (-)</td>
</tr>
<tr>
<td>20</td>
<td>Wejście 6 (-)</td>
</tr>
<tr>
<td>21</td>
<td>Wejście 7 (-)</td>
</tr>
<tr>
<td>22</td>
<td>Wejście 8 (-)</td>
</tr>
<tr>
<td>23</td>
<td>Wejście 9 (-)</td>
</tr>
<tr>
<td>24</td>
<td>Wejście 10 (-)</td>
</tr>
<tr>
<td>25</td>
<td>Wejście 11 (-)</td>
</tr>
</tbody>
</table>

Zwrócić szczególną uwagę, by nie przekroczyć dopuszczalnego napięcia (30VDC) na liniach wejściowych. Mogłoby to spowodować uszkodzenie urządzenia.

W konfiguracji „Port&Pins” w programie Mach3 wartość w kolumnie „Pin” nie oznacza nr pinu w złączu CSMIO/IP, tylko nr wejścia. Oznacza to, że wpisanie „10” oznacza wejście 10, czyli Pin 11(+) i pin 24(-) w złączu CSMIO/IP.
4.5.1 Konstrukcja obwodów wejściowych

Poniżej znajduje się uproszczony schemat obwodów wejściowych CSMIO/IP-A. Na schemacie wejścia nr 0 – 11 są oznaczone jako IN 0 – 11.

4.5.2 Sygnały na przejściówce Terminal-Block

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>We. 0+</td>
<td>We. 1+</td>
<td>We. 2+</td>
<td>We. 3+</td>
<td>We. 4+</td>
<td>We. 5+</td>
<td>We. 6+</td>
<td>We. 7+</td>
<td>We. 8+</td>
<td>We. 9+</td>
<td>We. 10+</td>
<td>We. 11+</td>
<td>GND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>We. 0-</td>
<td>We. 1-</td>
<td>We. 2-</td>
<td>We. 3-</td>
<td>We. 4-</td>
<td>We. 5-</td>
<td>We. 6-</td>
<td>We. 7-</td>
<td>We. 8-</td>
<td>We. 9-</td>
<td>We. 10-</td>
<td>We. 11-</td>
<td></td>
</tr>
</tbody>
</table>
4.5.3 Przykłady podłączenia sygnałów wejściowych

4.5.3.1 Czujnik indukcyjny typu PNP

W tym przykładzie czujnik z wyjściem typu PNP podłączony został do wejścia nr 1. W programie Mach3 podajemy w takim wypadku port=10 / pin=1.

4.5.3.2 Czujnik indukcyjny typu NPN

W tym przykładzie czujnik z wyjściem typu NPN podłączony został do wejścia nr 3. W programie Mach3 podajemy w takim wypadku port=10 / pin=3.
4.5.3.3 Zwykły przełącznik typu NC

W poniższym przykładzie przełącznik krańcowy typu NC podłączony został do wejścia nr 8 CSMIO/IP. W takim przypadku w programie Mach3 podajemy port=10 / pin=8.
4.6 Złącze wejść cyfrowych (12-23)

<table>
<thead>
<tr>
<th>Nr wyprowadzenia</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wejście 12 (+)</td>
</tr>
<tr>
<td>2</td>
<td>Wejście 13 (+)</td>
</tr>
<tr>
<td>3</td>
<td>Wejście 14 (+)</td>
</tr>
<tr>
<td>4</td>
<td>Wejście 15 (+)</td>
</tr>
<tr>
<td>5</td>
<td>Wejście 16 (+)</td>
</tr>
<tr>
<td>6</td>
<td>Wejście 17 (+)</td>
</tr>
<tr>
<td>7</td>
<td>Wejście 18 (+)</td>
</tr>
<tr>
<td>8</td>
<td>Wejście 19 (+)</td>
</tr>
<tr>
<td>9</td>
<td>Wejście 20 (+)</td>
</tr>
<tr>
<td>10</td>
<td>Wejście 21 (+)</td>
</tr>
<tr>
<td>11</td>
<td>Wejście 22 (+)</td>
</tr>
<tr>
<td>12</td>
<td>Wejście 23 (+)</td>
</tr>
<tr>
<td>13</td>
<td>Nie używane (GND)</td>
</tr>
<tr>
<td>14</td>
<td>Wejście 12 (-)</td>
</tr>
<tr>
<td>15</td>
<td>Wejście 13 (-)</td>
</tr>
<tr>
<td>16</td>
<td>Wejście 14 (-)</td>
</tr>
<tr>
<td>17</td>
<td>Wejście 15 (-)</td>
</tr>
<tr>
<td>18</td>
<td>Wejście 16 (-)</td>
</tr>
<tr>
<td>19</td>
<td>Wejście 17 (-)</td>
</tr>
<tr>
<td>20</td>
<td>Wejście 18 (-)</td>
</tr>
<tr>
<td>21</td>
<td>Wejście 19 (-)</td>
</tr>
<tr>
<td>22</td>
<td>Wejście 20 (-)</td>
</tr>
<tr>
<td>23</td>
<td>Wejście 21 (-)</td>
</tr>
<tr>
<td>24</td>
<td>Wejście 22 (-)</td>
</tr>
<tr>
<td>25</td>
<td>Wejście 23 (-)</td>
</tr>
</tbody>
</table>

Zwrócić szczególną uwagę, by nie przekroczyć dopuszczalnego napięcia (30VDC) na liniach wejściowych. Mogłoby to spowodować uszkodzenie urządzenia.

Wejścia nr 12 – 23 mają identyczną konstrukcję co wejścia nr 0 -11. Spójrz na opis wejść 0 – 1 w poprzednim podrozdziale – znajdują się tam przykłady podłączeń.

4.6.1 Sygnały na przejściówce Terminal-Block

![Diagram]

Zwróc uwagę, by nie przekroczyć dopuszczalnego napięcia (30VDC) na liniach wejściowych. Mogłoby to spowodować uszkodzenie urządzenia.
4.7 Złącze wyjść cyfrowych (0-15)

<table>
<thead>
<tr>
<th>Nr wyprowadzenia</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zasilanie 24V dla wyjść 0-3</td>
</tr>
<tr>
<td>2</td>
<td>Wyjście 0</td>
</tr>
<tr>
<td>3</td>
<td>Wyjście 2</td>
</tr>
<tr>
<td>4</td>
<td>Zasilanie 24V dla wyjść 4-7</td>
</tr>
<tr>
<td>5</td>
<td>Wyjście 4</td>
</tr>
<tr>
<td>6</td>
<td>Wyjście 6</td>
</tr>
<tr>
<td>7</td>
<td>Zasilanie 24V dla wyjść 8-11</td>
</tr>
<tr>
<td>8</td>
<td>Wyjście 8</td>
</tr>
<tr>
<td>9</td>
<td>Wyjście 10</td>
</tr>
<tr>
<td>10</td>
<td>Zasilanie 24V dla wyjść 12-15</td>
</tr>
<tr>
<td>11</td>
<td>Wyjście 12</td>
</tr>
<tr>
<td>12</td>
<td>Wyjście 14</td>
</tr>
<tr>
<td>13</td>
<td>GND (nie używane)</td>
</tr>
<tr>
<td>14</td>
<td>Masa 0V dla wyjść 0-3</td>
</tr>
<tr>
<td>15</td>
<td>Wyjście 1</td>
</tr>
<tr>
<td>16</td>
<td>Wyjście 3</td>
</tr>
<tr>
<td>17</td>
<td>Masa 0V dla wyjść 4-7</td>
</tr>
<tr>
<td>18</td>
<td>Wyjście 5</td>
</tr>
<tr>
<td>19</td>
<td>Wyjście 7</td>
</tr>
<tr>
<td>20</td>
<td>Masa 0V dla wyjść 8-11</td>
</tr>
<tr>
<td>21</td>
<td>Wyjście 9</td>
</tr>
<tr>
<td>22</td>
<td>Wyjście 11</td>
</tr>
<tr>
<td>23</td>
<td>Masa 0V dla wyjść 12-15</td>
</tr>
<tr>
<td>24</td>
<td>Wyjście 13</td>
</tr>
<tr>
<td>25</td>
<td>Wyjście 15</td>
</tr>
</tbody>
</table>

W konfiguracji „Port&Pins” w programie Mach3 wartość w kolumnie „Pin” nie oznacza nr pinu w złączu CSMIO/IP, tylko nr wyjścia. Oznacza to, że wpisanie „9” oznacza wyjście 9, czyli Pin 21 w złączu CSMIO/IP.

Wyjścia mają obciążalność 250mA. Trzeba również zwrócić uwagę, jeśli podłączane są duże indukcyjności zalecane jest stosowanie dodatkowej diody przeciwpieciowej, najlepiej jak najbliżej cewki.
4.7.1 Konstrukcja obwodów wyjściowych

Jak widać na schemacie obok, każde wyjście jest izolowane optycznie. Wyjścia są podzielone na grupy, po cztery w każdej grupie.

Każdą grupę wysterowuje specjalizowany układ scalony VNQ860. Układy te działają w logice PNP, wobec tego aktywnym stanem jest stan wysoki (+24V).

Układy VNQ860 nie są zasilane z tego samego źródła zasilania co CSMIO/IP.

Gdyby tak było, optoizolacja nie miałaby większego sensu. Trzeba wobec tego pamiętać, żeby dostarczyć zasilanie dla każdej grupy wyjść, której używamy.

Jeśli nie zależy nam na separacji potencjałów zasilania sterownika CSMIO/IP i wyjść cyfrowych i chcemy używać jednego źródła zasilania, możemy połączyć zasilanie wszystkich grup (piny 1, 4, 7, 10) i podłączyć do +24V zasilania sterownika. Oczywiście trzeba również podłączyć linie powrotne zasilania, 0V (piny 14, 17, 20, 23) do masy GND zasilania sterownika CSMIO/IP.

4.7.2 Sygnały na przejściówce Terminal-Block

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+24V</td>
<td>Wy. 0</td>
<td>Wy. 2</td>
<td>+24V</td>
<td>Wy. 4</td>
<td>Wy. 6</td>
<td>+24V</td>
<td>Wy. 8</td>
<td>Wy. 10</td>
<td>+24V</td>
<td>Wy. 12</td>
<td>+24V</td>
<td>Wy. 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wy. 1</td>
<td>Wy. 3</td>
<td>+24V</td>
<td>Wy. 5</td>
<td>Wy. 7</td>
<td>+24V</td>
<td>Wy. 9</td>
<td>Wy. 11</td>
<td></td>
<td>Wy. 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0V</td>
<td>Wy. 1</td>
<td>Wy. 3</td>
<td>0V</td>
<td>Wy. 5</td>
<td>Wy. 7</td>
<td>0V</td>
<td>Wy. 9</td>
<td>Wy. 11</td>
<td>0V</td>
<td>Wy. 13</td>
<td>0V</td>
<td>Wy. 15</td>
</tr>
</tbody>
</table>
4.7.3 Przykład – sygnał załączania wrzeciona

W poniższym przykładzie na podstawie konfiguracji wyjścia załączającego wrzeciono (M3) widać dokładnie następującą zależność:

[Sygnał programu Mach3] ⇒ [Sygnał CSMIO/IP] ⇒ [Pin w złączu CSMIO/IP]
4.8 Złącze modułów rozszerzeń

<table>
<thead>
<tr>
<th>Nr wyprowadzenia</th>
<th>opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAN H</td>
</tr>
<tr>
<td>2</td>
<td>RS232 RxD</td>
</tr>
<tr>
<td>3</td>
<td>RS232 TxD</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>CAN L</td>
</tr>
<tr>
<td>7</td>
<td>RS485 B-</td>
</tr>
<tr>
<td>8</td>
<td>RS485 A+</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Złącze przeznaczone jest wyłącznie dla modułów rozszerzeń firmy CS-Lab s.c. Nie należy podłączać pod nie żadnych innych urządzeń, komputera PC itp.
4.9 Złącze zasilania

<table>
<thead>
<tr>
<th>Nr wyprowadzenia</th>
<th>opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zasilanie – 24V DC</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>Uziemienie</td>
</tr>
</tbody>
</table>

Zwrócić szczególną uwagę, by nie przekroczyć dopuszczalnego napięcia zasilania (30VDC). Mogłoby to spowodować uszkodzenie urządzenia.
Jeśli w systemie używane są obciążenia indukcyjne takie jak elektromagnesy, elektrozawory, sprzęgła elektromagnetyczne – zaleca się stosowanie osobnego zasilacza 24V dla wyżej wymienionych odbiorników i osobnego dla CSMIO/IP-A.

4.10 Złącze komunikacyjne – Ethernet

<table>
<thead>
<tr>
<th>Nr wyprowadzenia</th>
<th>opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX+</td>
</tr>
<tr>
<td>2</td>
<td>TX-</td>
</tr>
<tr>
<td>3</td>
<td>Rx+</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>RX-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
</tr>
</tbody>
</table>

Zalecamy stosowanie przewodów ekranowanych, FTP lub STP kat.6.
4.11 Zalecane przewody

<table>
<thead>
<tr>
<th>Rodzaj połączeń</th>
<th>Zalecany przewód</th>
</tr>
</thead>
<tbody>
<tr>
<td>We/wy cyfrowe</td>
<td>Minimalny przekrój 0,25mm² (AWG-23)</td>
</tr>
<tr>
<td>We/wy analogowe</td>
<td>Przekrój 0,25mm² (AWG-23) ekranyowany, ewentualnie para przewodów sygnał-masa skręcone ze sobą na całej długości.</td>
</tr>
<tr>
<td>Sterowanie napędami – sygnały analogowe +/-10V</td>
<td>Przekrój 0,25mm² (AWG-23) ekranyowany – skrętka. Można ewentualnie wykorzystać przewód komputerowy FTP. Należy pamiętać, by pary sygnałów (np. Wy Analog Ch0/GND Ch0) prowadzić zawsze skręconą parą przewodów.</td>
</tr>
<tr>
<td>Przewód komunikacji Ethernet</td>
<td>Standardowy przewód sieciowy, ekranyowany - FTP, kat. 6.</td>
</tr>
<tr>
<td>Zasilanie</td>
<td>Minimalny przekrój 0,5mm² (AWG-20)</td>
</tr>
<tr>
<td>Moduły rozszerzeń CAN</td>
<td>Jeśli moduły montowane są na tej samej szynie DIN, zaraz obok sterownika, można użyć wtyczek DB9 zaciśniętych na taśmie 9 przewodowej. Gdy moduł jest montowany dalej, należy użyć tzw. skrętki ekranyowanej (FTP lub STP).</td>
</tr>
</tbody>
</table>

Podczas montażu mechanicznego i elektrycznego zalecana jest szczególna staranność. Źle dokręcony przewód może być przyczyną wielu problemów, trudne też może być znalezienie tego typu usterki podczas uruchamiania/użytkowania systemu.
4.12 Znaczenie kontrolek sygnalizacyjnych LED

Na przednim panelu urządzenia CSMIO/IP znajdują się grupy kontrolek LED ułatwiających sprawdzenie poprawności montażu elektrycznego oraz diagnostykę elementów takich jak np. wyłączniki bazujące (HOME), krańcowe (LIMIT), bezpieczeństwa (E-Stop) itp.

4.12.1 Rodzaje i umiejscowienie kontrolek LED

- Kontrolki wejść cyfrowych 0-23, kontrolki błędu oraz aktywność portów komunikacyjnych
- Kontrolka CAN świeci się, jeśli podłączony jest przynajmniej jeden moduł rozszerzeń i odbywa się poprawna komunikacja na szynie CAN.
- Kontrolka RS485 świeci się jeśli odbywa się komunikacja na szynie RS485.
- Kontrolka RS232 świeci się jeśli odbywa się komunikacja na porcie RS232.
- Kontrolka ETHERNET świeci się jeśli sterownik nawiązał poprawnie komunikację z komputerem PC.
- Kontrolki ERR0-ERR2 sygnalizują wewnętrzne błędy sterownika. Podczas normalnej pracy żadna z nich nie powinna się świecić. Jeśli któraś z nich jest zapalona należy skontaktować się z serwisem – patrz zakładka „kontakt” na http://www.cs-lab.eu
- Kontrolki STAT0-STAT3 sygnalizują wewnętrzny status sterownika, podanie ich stanu do serwisu może być pomocne w przypadku, gdy występują jakiekolwiek problemy podczas pracy urządzenia. Poniżej znajduje się dokładny opis znaczenia w/w kontrolek.
4.12.2 Opis kontrolek stanu - STATx

<table>
<thead>
<tr>
<th>Stan kontrolek STATx</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>![stat1]</td>
<td>Stan oczekiwania na przesłanie parametrów konfiguracyjnych z komputera PC. Jest to stan domyślny po załączeniu zasilania, przed nawiązaniem komunikacji z programem Mach3.</td>
</tr>
<tr>
<td>![stat2]</td>
<td>Stan gotowości. Oznacza, że urządzenie pracuje poprawnie, nie występują żadne sygnały alarmowe takie jak E-Stop, czy LIMIT. CSMIO/IP-A oczekuje na komendy z komputera PC.</td>
</tr>
<tr>
<td>![stat3]</td>
<td>Oznacza, że jedna lub więcej osi jest w danej chwili w trybie ruchu ręcznego (JOG).</td>
</tr>
<tr>
<td>![stat4]</td>
<td>Oznacza, że jedna lub więcej osi wykonywa w danej chwili bazowanie (HOMING).</td>
</tr>
<tr>
<td>![stat5]</td>
<td>Buforowanie danych trajektorii ruchu.</td>
</tr>
<tr>
<td>![stat6]</td>
<td>Sterownik jest w trybie wykonywania komendy G31 (najazd na czujnik pomiaru narzędzia, skanowanie itp.).</td>
</tr>
<tr>
<td>![stat7]</td>
<td>Tryb interpolowanego ruchu po trajektorii - czyli wykonywanie programu CNC lub komendy MDI. Również komendy ruchu z poziomu skryptów (makro) programu Mach3 powodują wejście urządzenia w ten stan.</td>
</tr>
<tr>
<td>![stat8]</td>
<td>Zatrzymanie awaryjne. Wejście w ten stan wywołuje pojawienie się stanu aktywnego na linii wejściowej zdefiniowanej jako E-Stop, lub wywołanie E-Stop z poziomu programu Mach3.</td>
</tr>
<tr>
<td>![stat9]</td>
<td>Stan alarmowy. Występuje gdy praca sterownika została przerwana w wyniku wykrycia problemów. Stan ten mogą wywołać takie zdarzenia jak: sygnał FAULT napędu serwo, sygnał krańcówki sprzętowej, przekroczenie pola roboczego przy załączonej funkcji SOFT-LIMIT itp.</td>
</tr>
<tr>
<td>![stat10]</td>
<td>Inne. Stan taki pojawia się dla innych funkcji dodatkowych takich jak np. gwintowanie na sztywno itp.</td>
</tr>
</tbody>
</table>

Objaśnienie:

- † kontrolka jest wygaszona
- ‡ kontrolka świeci światłem ciągłym
- †† kontrolka mruga
4.13 Przykład - poglądowy schemat plotera trzyosiowego (XYZ)

4.13.1 Zasilanie

W przedstawionym przykładzie zastosowano pojedynczy zasilacz DC 24V. W większości wypadków nie ma sensu stosować osobnego zasilania dla CSMIO/IP i dla pozostałych elementów składowych, chyba, że w systemie zastosowano drogie/czułe komponenty, lub takie, które generują dużo zakłóceń (duże elektrozawory, styczniki, hamulce elektromagnetyczne itp.).
4.13.2 Podłączenie serwonapędów

Poniżej przedstawiono przykładowe podłączenie serwonapędów. Można rozróżnić trzy podstawowe funkcje sygnałów: enkoder, sygnał analogowy +/-10V oraz cyfrowe sygnały sterujące.

Sygnały enkodera informują sterownik o aktualnej pozycji silnika (osi). Sygnał analogowy +/-10V steruje poprzez serwowzmocniacz prędkością obrotową silnika, natomiast sygnały sterujące to: załączenie napędu, reset błędu oraz sygnał informujący o alarmie (np. przeciążenie, przegrzanie itp.) napędu.

Serwowzmocniacze różnych producentów mogą nieco różnić się od siebie, jednak zasada praktycznie jest z reguły identyczna. Zmienia się nazewnictwo sygnałów, czasem we/wy pracują jako PNP, czasem NPN, lecz prawie zawsze podłączenie serwowzmocniaczy wygląda jak powyżej.

Sygnały enkoderowe i sygnał analogowy +/-10V zawsze podłączaj przy pomocy przewodu skrętki (ang. Twisted-Pair).
4.13.3 Wyłączniki krańcowe oraz sygnał stopu awaryjnego E-STOP

Najprostszym wariantem zapewniającym niezbędne minimum bezpieczeństwa jest zastosowanie po 2 wyłączniki z każdej strony osi. W takim wypadku jeden wyłącznik pracuje tylko i wyłącznie jako sygnał bezpieczeństwa LIMIT, natomiast drugi pełni funkcję podwójną: LIMIT oraz HOMING (bazowanie).

W naszym przykładzie plotera trzyosiowego osie X i Y bazować będziemy po stronie ujemnej (w stronę malejących współrzędnych), więc funkcję podwójną będą pełnić wyłączniki LIMIT--. Oś Z natomiast bazowana jest u góry, a ruch w górę w większości wypadków na maszynach CNC to ruch w kierunku dodatnim. Funkcję podwójną wobec tego będzie dla osi Z pełnił wyłącznik LIMIT++.

Wejście 3(+)

Wejście 4(+)

Wejście 5(+)

Wejście 6(+)

Wejście 7(+)

Wejście 8(+)

Wejście 9(+)

Wejście 3-9(-)

Sygnał CSMIO/IP-A | Nr pinu w złączu CSMIO/IP-A | Funkcja | Port w Mach3 (Port&Pins) | Pin w Mach3 (Port&Pins) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wejście 3(+)</td>
<td>4</td>
<td>X LIMIT--</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Wejście 4(+)</td>
<td>5</td>
<td>X LIMIT++</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Wejście 5(+)</td>
<td>6</td>
<td>Y LIMIT--</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Wejście 6(+)</td>
<td>7</td>
<td>Y LIMIT++</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Wejście 7(+)</td>
<td>8</td>
<td>Z LIMIT--</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Wejście 8(+)</td>
<td>9</td>
<td>Z LIMIT++</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Wejście 9(+)</td>
<td>10</td>
<td>E-STOP</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Wejście 3-9(-)</td>
<td>17-23</td>
<td>Potencjał '−' dla wejść 3-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wejścia optyczne w CSMIO/IP-A wymagają podłączenia zarówno potencjału '+' jak i '−'. Wyprowadzenia '−' wykorzystywanych wejść cyfrowych są podłączone do potencjału 0V zasilania – patrz podrozdział „Zasilanie“.
4.13.4 Podłączenie falownika, z użyciem wyjścia analogowego.

Na powyższym przykładzie przedstawiono podłączenie falownika Commander SK do obsługi wrzeciona.

<table>
<thead>
<tr>
<th>Sygnał CSMIO/IP-A</th>
<th>Złącze na CSMIO/IP-A</th>
<th>Nr pinu w złącze CSMIO/IP-A</th>
<th>Funkcja falownika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Połączenie masy analogowej</td>
<td>DB25 – Analog I/O</td>
<td>20</td>
<td>Masa – potencjał odniesienia dla wejść analogowego zadawania prędkości</td>
</tr>
<tr>
<td>Wyjście analogowe 0</td>
<td>DB25 – Analog I/O</td>
<td>7</td>
<td>Wejście napięciowe 0-10V zadawania prędkości</td>
</tr>
<tr>
<td>Masa zasilania wyjść cyfrowych CSMIO/IP</td>
<td>DB25 – Digital outputs (0-15)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Zasilanie wyjść 4 i 5</td>
<td>DB25 – Digital outputs (0-15)</td>
<td>4</td>
<td>Wyjście 24V dla sygnałów sterujących</td>
</tr>
<tr>
<td>Wyjście cyfrowe 4</td>
<td>DB25 – Digital outputs (0-15)</td>
<td>5</td>
<td>Załączenie obrotów prawych</td>
</tr>
<tr>
<td>Wyjście cyfrowe 5</td>
<td>DB25 – Digital outputs (0-15)</td>
<td>18</td>
<td>Załączenie obrotów lewych</td>
</tr>
</tbody>
</table>

Pamiętaj o prawidłowym ustawieniu parametrów konfiguracyjnych falownika. Ich niewłaściwe ustawienie w najlepszym wypadku spowoduje, że falownik zgłosi błąd, w najgorszym - silnik wrzeciona ulegnie trwałemu uszkodzeniu (uszkodzenia takie nie są objęte gwarancją).

Konfiguracja programu Mach3, dotycząca obsługi wrzeciona z regulacją obrotów opisana została w rozdziale 10 – „Konfiguracja programu Mach3".
4.13.5 Automatyczne sterowanie zasilaniem napędów (HV)

Sterownik CSMIO/IP-A umożliwia automatyczne sterowanie zasilaniem napędów siniksów i ewentualnie innych urządzeń. Funkcję konfiguruje się w menu „Config″ Config Plugins″ CSMIO/IP-A CONFIG″. Logika działania wyjścia zdefiniowanego jako tzw. „HV Enable” jest bardzo prosta. Napięcie jest załączane w chwili wysłania żądania „Reset” przez program Mach3 i pozostaje włączone do chwili, gdy nie wystąpi jedno z poniższych zdarzeń:

- Sygnał FAULT z napędu którejś osi
- Sygnał E-STOP (wciśnięcie grzybka stopu awaryjnego)
- Najazd na wyłącznik krańcowy
- Zerwanie komunikacji z programem Mach3
- Błąd wewnętrznych regulatorów pozycji lub prędkości CSMIO/IP-A

Poniżej przykład podłączenia wyjścia wykorzystywanego jako „HV Enable”.

![Diagram](image.png)

W przypadku stosowania dużych styczników do odłączania napięcia, sprawdź czy cewka nie pobiera powyżej 250mA. Jeśli tak, należy zastosować mniejszy przekaźnik i dopiero nim włączać większy. Przy dużym styczniku dobrze jest też dać diodę i kondensator przeciwzakłócenowy dla wyeliminowania przepięć powstających przy wyłączaniu cewki.

Funkcja sterowania napięciem „HV Enable” jest realizowana autonomicznie przez sterownik CSMIO/IP-A. Czas reakcji na zdarzenia mające spowodować odłączenie napięcia mieści się w 1ms.

W przykładzie wykorzystano wyjście cyfrowe nr 2. Podłączenie zasilania grupy wejść 0-3 pokazane jest w podrozdziale ‘Zasilanie’.
5 Zalecenia i dobór napędów (driver’ów silników)

Dobierając napędy, które będą pracowały pod kontrolą sterownika CSMIO/IP-A należy przede wszystkim upewnić się, że mogą być sterowane analogowym (+/10V) sygnałem zadającym prędkość oraz, że napęd posiada wyjście enkodera w standardzie różnicowym 5V. Możliwe jest też zastosowanie podwójnego sprzężenia zwrotnego, wtedy do wejść enkoderowych CSMIO/IP-A podłączamy liniały (enkodery liniowe) zamocowane na osiach obrabiarki, a wyjścia enkoderowe z napędów zostawiamy wolne.

- Lekki ploter XYZ (np. wycinarka plazmowa), niskie przyspieszenia (400mm/s²), łożyska liniowe, napęd na listwach zębatych, przełożenie: 5mm posuwu / obrót silnika. Prędkość maksymalna 15m/min.
 - Napęd osi X (bramy) 2 x 0,2kW (oś zależna)
 - Napęd osi Y 0,2kW
 - Napęd osi Z 0,2kW

- Ploter frezujący XYZ z ruchomym stołem (np. cięcie tworzyw typu plexi itp.), przyspieszenia (700mm/s²), łożyska liniowe, napęd na śrubach kulowych, przełożenie: 10mm posuwu / obrót silnika dla osi X i Y, 5mm posuwu/obrót silnika dla osi Z. Prędkość maksymalna (XY) 30m/min.
 - Napęd osi Y (stołu) 1,2 kW
 - Napęd osi Y 0,7kW
 - Napęd osi Z 0,7kW

- Tokarka do obróbki stali, przyspieszenia (500mm/s²), łoża pryzmowe, napęd na śrubach przełożenie: 5mm posuwu / obrót silnika. Prędkość max. 15m/min.
 - Napęd osi Z 2,2 kW
 - Napęd osi X 1,2kW

W powyższych przykładach podano raczej minimalne wartości mocy. Trzeba też pamiętać, by przełożenia były tak dobrane, by maksymalnej prędkości posuwu roboczego odpowiadały nominalne obroty silnika. Jeśli silnik będzie miał nominalne obroty 3000obr/min, a w praktyce obracać się będzie do maks. 1000obr/min np. na skutek wibracji śruby napędowej, to marnować się będzie 66% potencjalnej mocy napędu… Poza tym źle dobrane przełożenie spowoduje większe problemy z zestrojeniem regulatorów PID. Naprawdę warto więc poświęcić mechanice należytą uwagę, by uzyskać dobre parametry pracy obrabiarki.

Silnik chwilowo może obrać się z wyższą prędkością niż nominalna, jednak tą „nadwyżkę” zalecanym rezerwować raczej dla ruchów przestawczych.

W przypadku modernizacji starych obrabiarek, warto zastanowić się nad wymianą napędów, nawet gdy pozornie są sprawne. Rozmagnesowanie silników oraz powysycone kondensatory może bardzo obniżyć jakość pracy, a po niedługim czasie być przyczyną awarii.
6 Dokładne bazowanie z użyciem sygnału „indeks” enkodera

Użycie tzw. sygnału INDEX enkodera znacznie poprawia dokładność i powtarzalność bazowania. Jako, że w CSMIO/IP-A współpracuje z enkoderami inkrementalnymi, po załączeniu zasilania system sterowania nie zna pozycji poszczególnych osi. Dlatego potrzebne jest wykonanie bazowania (lub jazdy referencyjnej – różnie jest to nazywane). Dokładność tego bazowania jest szczególnie istotna, jeśli przeprowadzana jest dokładna obróbka jakiegoś detalu i ta obróbka zostanie z jakiegoś powodu (np. zanik zasilania) przerwana. Po ponownym uruchomieniu systemu trzeba wykonać bazowanie i właśnie od jego dokładności będzie zależało na ile maszyna „wstrzeli” się w wymiar.

Bazowanie „na indeks” ustawia wirnik silnika praktycznie zawsze idealnie w tej samej pozycji. Ewentualne odchyłki bazowania mogą powstać na skutek kiepskiej kondycji mechaniki – np. dużych luzów obrabiarki.

Zawsze warto podłączyć sygnał indeksu z wyjścia enkoderowego serwonapędu, by móc korzystać z dokładnego bazowania.

6.1 Załączenie bazowania z „indeksem”

W oknie konfiguracji plugin'a jest możliwość wyboru trybu bazowania dla każdej osi: zwykłe lub z indeksem.

Konfiguracja została opisana szczegółowo w rozdziale 10.

Pamiętaj o wpisaniu wartości imp/obrót w polu „Enkoder Pulses/Rev”. Jest to konieczne dla poprawnego działania funkcji sprawdzającej bezpieczną odległość pomiędzy punktem zadziałania wyłącznika HOME i pozycji INDEX. Zbyt mała odległość może powodować rozrzuty bazowania o cały obrót wału silnika.
7 Podłączenie i konfiguracja sieci LAN

Nie używaj połączenia bezprzewodowego WiFi. W sieci bezprzewodowej czas przesyłania danych jest dłuższy i wymaga wielu ponowień transmisji. Może powodować to problemy podczas pracy.

7.1 Bezpośrednie połączenie z komputerem PC

Sterownik CSMIO/IP można połączyć bezpośrednio z komputerem PC, bez użycia tzw. switch’y czy router’ów. Przy takim połączeniu należy pamiętać tylko o tym, że przewód powinien być krosowany (crossover). Taki przewód jest dostarczany wraz ze sterownikiem. Poniżej sposób wykonania przewodu.

<table>
<thead>
<tr>
<th>Wtyczka 1</th>
<th>Kolor przewodu</th>
<th>Wtyczka 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>biało-pomarańczowy</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>pomarańczowy</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>biało-zielony</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>niebieski</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>biało-niebieski</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>zielony</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>biało-brązowy</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>brązowy</td>
<td>5</td>
</tr>
</tbody>
</table>

Przy połączeniu bezpośrednim należy ustawić w komputerze PC statyczny adres IP na 10.1.1.1 oraz maskę na 255.255.255.0.

7.1.1 Konfiguracja Windows®XP.

- Klikamy prawym przyciskiem myszy na ikonie „Moje miejsca sieciowe” i z menu, które się ukaże wybieramy pozycję „Właściwości”. Otworzy się okno z ikonami (lub ikoną) połączeń sieciowych.

- Na ikonie połączenia, którego chcemy używać do komunikacji z CSMIO/IP (z reguły jest to połączenie o nazwie „połączenie lokalne”) klikamy prawym przyciskiem myszy i wybieramy pozycję „Właściwości”.

![Diagram](image-url)
- W oknie, które się ukaże, zaznaczamy pozycję „Protokół internetowy (TCP/IP) i klikamy lewym przyciskiem myszy na „Właściwości”.

- W oknie, które się ukaże, wpisujemy adres IP:10.1.1.1 oraz maskę 255.255.255.0. Resztę pól zostawiamy wolną i zatwierdzamy przyciskiem OK.

- W oknie „Właściwości: Połączenie lokalne” klikamy przycisk „Zamknij”.

- Od tej chwili sieć jest skonfigurowana do pracy z CSMIO/IP.

7.1.2 Konfiguracja Windows® 7.

W panelu sterowania wybieramy „Wyświetl stan sieci i zadania”
Następnie proszę wybrać polecenie „Zmień ustawienia karty sieciowej”.

Klikamy prawym przyciskiem i wybieramy „Właściwości” połączenia sieciowego.
Klikamy dwukrotnie na protokół TCP/IPv4, a następnie wpisujemy adres IP: 10.1.1.1 oraz maskę sieci: 255.255.255.0. Następnie zatwierdzamy przyciskiem OK.

Sterownik CSMIO/IP-A po załączeniu zasilania najpierw próbuje automatycznie skonfigurować swój adres IP i w tym celu wysyła żądanie do serwera DHCP. Gdy po trzech nieudanych próbach nie otrzyma odpowiedzi z serwera, ustawia się na domyślny adres IP: 10.1.1.2. Trwa to nie dłużej niż 10 sekund, trzeba jednak pamiętać, by odczekać 10 sekund po załączeniu zasilania przed próbą skomunikowania się z urządzeniem.

Pamiętaj, by stosować ekranowane przewody. Połączenie ethernet jest wysoce odporne na zakłócenia, ale ekranowany przewód na pewno nie zaszkodzi. Szczególnie jeśli stosowane są serwak lub wrzeciono sporej mocy.
7.2 Sieć lokalna z router’em i DHCP.

W przypadku, gdy sterownik CSMIO/IP-A wpinamy do sieci komputerowej, w której jest router przydzierający adresy IP, urządzenie automatycznie pobierze sobie ustawienia adresu i maski sieciowej.

W większości przypadków nie ma potrzeby, by wiedzieć jaki adres IP został przyporządkowany do urządzenia, gdyż zarówno wtyczka (plugin), jak i aplikacja aktualizująca oprogramowanie sterownika automatycznie wyszukuje CSMIO/IP-A w sieci. Jeśli jednak chcemy wiedzieć pod jakim numerem IP jest sterownik, można się tego dowiedzieć ze strony konfiguracyjnej routera (sterownik zgłasza się z nazwą **CSMIO-IP-xxxx**, gdzie xxxx to cztery ostatnie cyfry adresu sprzętowego MAC. Poniżej przykładowy zrzut ekranu z serwera DHCP, na którym widać urządzenia CSMIO/IP w sieci.

![Zrzut ekranu z serwera DHCP](image)

<table>
<thead>
<tr>
<th>Wtyczka 1</th>
<th>Kolor przewodu</th>
<th>Wtyczka 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>biało-pomarańczowy</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>pomarańczowy</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>biało-zielony</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>niebieski</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>biało-niebieski</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>zielony</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>biało-brązowy</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>brązowy</td>
<td>8</td>
</tr>
</tbody>
</table>

W większości przypadków przewód krosowany dostarczany razem z urządzeniem również zadziała, ponieważ większość router’ów posiada funkcję automatycznego wykrywania typu przewodu, tzw. AutoMDX. W żadnym wypadku nic nie ulegnie uszkodzeniu, nawet jeśli router nie posiada wyżej wspomnianej funkcji.

Pamiętaj, by stosować ekranowane przewody. Połączenie ethernet jest wysoce odporne na zakłócenia, ale ekranowany przewód na pewno nie zaszkodzi. Szczególnie jeśli stosowane są serwa lub wrzeciono sporej mocy.
8 Program Mach3 – informacje ogólne

Oprogramowanie Mach3 firmy ArtSoft® jest rozwijane już od wielu lat i w tym czasie zdobyło sporą rzeszę użytkowników. Za stosunkowo niską cenę (~170USD) otrzymujemy kompleksowe rozwiązanie dla wieloosiowej obróbki CNC. Najważniejsze zalety programu to:

- Elastyczność

- Możliwość samodzielnego rozszerzania funkcjonalności programu poprzez makra pisane w prostym i znanym przez wiele osób VisualBasic®. Dzięki temu możliwe jest implementowanie najsilniejszych sond pomiarowych, automatycznego pomiaru długości narzędzi, automatycznych magazynów narzędzi w wielu wariantach itp.

- Obsługa tzw. wtyczek (plugins), dodatkowo rozszerzających zakres funkcji programu oraz umożliwiających współpracę z zewnętrznymi kontrolerami ruchu. Połączenie ze sterownikiem CSMIO/IP-A odbywa się właśnie za pośrednictwem takiej wtyczki, stworzonej przez naszą firmę i tworzącej „pomost” pomiędzy programem Mach3, a sterownikiem.

- Łatwość obsługi
 - Osoby, które miały wcześniej styczność z obrabiarkami CNC są w stanie praktycznie w ciągu jednego dnia przyswoić sobie podstawowe funkcje i zasady obsługi programu Mach3.
 - Konfiguracja kluczowych parametrów jest przejrzysta i intuicyjna, dzięki czemu można je szybko dopasować do wymagań specyficznej maszyny.
Dynamiczna analiza trajektorii

- Program CNC jest analizowany z wyprzedzeniem, co pozwala na optymalne dopasowanie prędkości ruchu w każdym punkcie trajektorii. Dzięki temu program wykonywany jest szybko, ale z zachowaniem pełnej płynności ruchu.

Firma CS-Lab s.c. jest autoryzowanym dystrybutorem programu Mach3 w Polsce. Jeśli są Państwo zainteresowani kupnem licencji, proszę kontaktować się na adres email: biuro@cs-lab.eu.

Jeśli zamawiają Państwo sterownik CSMIO/IP-A i od razu chcą Państwo zamówić licencję, proszę podać dokładne dane osoby/firmy, na którą licencja ma być wystawiona.

Należy pamiętać, że program Mach3 jest programem wyłącznie do obsługi maszyny - nie umożliwia projektowania, rysowania itp. Istnieją co prawda funkcje pozwalające wygenerować kod CNC do prostych operacji, jednak najlepiej posiadać dodatkowo na wyposażeniu program typu CAM, taki jak np. ArtCam, MasterCam itp.
8.1 Zalecana konfiguracja komputera PC

Program Mach3 nie ma wygórowanych wymagań dotyczących komputera PC, chyba, że ścieżki narzędzi, których Państwo używają zajmują kilka, a nawet kilkadziesiąt megabajtów – wtedy zalecamy raczej szybszy komputer, gdyż nawet samo ładowanie ścieżki do programu może chwilę potrwać. Również symulacja czasu wykonania przy tak dużych ścieżkach będzie przebiegała sprawniej na szybszym komputerze.

Zalecana konfiguracja komputera PC:

- Procesor Intel CoreDuo 2GHz
- 2GB pamięci RAM
- Karta grafiki 512MB

Na komputerze PC używanym do sterowania maszyną nie powinno być instalowane żadne dodatkowe oprogramowanie, poza systemem Windows® oraz programem Mach3. Projektowanie i wszystkie inne zadania powinny być realizowane na oddzielnym komputerze.

Komputer używany do sterowania maszyną może być podłączony do sieci komputerowej, należy jednak pamiętać o zabezpieczeniu antywirusowym.

Zaleca się wyłączyć w systemie Windows® wszystkie efekty wizualne, wyłączyć wygaszacz ekranu oraz ustawić schemat zasilania na „zawsze włączony”.

Jeśli komputer zamontowany jest razem z resztą systemu sterowania w szafie sterowniczej, należy pamiętać by zamknąć system Windows® przed wyłączeniem zasilania. W przeciwnym wypadku dość szybko może okazać się niezbędna reinstallacja systemu operacyjnego.
9 Instalacja oprogramowania

Przed przystąpieniem do pracy należy na komputerze PC przeznaczonym do obsługi maszyny zainstalować oprogramowanie Mach3 oraz wtyczkę (plugin) zapewniającą poprawną współpracę programu i sterownika CSMIO/IP.

9.1 Instalacja programu Mach3

Po ściągnięciu pliku, należy go uruchomić i postępować zgodnie z instrukcjami na ekranie. Generalnie sprowadza się to do klikania „Next”. Jedynie w oknie wyboru komponentów do zainstalowania odznaczamy pozycję „Parallel Port Driver”. Jest to sterownik portu równoległego, który przy sterowaniu CSMIO/IP nie jest używany i będzie tylko niepotrzebnie obciążał komputer.

W dalszej części instalacji można stworzyć sobie od razu profil konfiguracji, którego będziemy używać. Profile konfiguracji można również stworzyć później. Jeśli chcemy to zrobić podczas instalacji, w zależności od typu posiadanej maszyny klikamy:

- **Mill profile** - frezarka
- **Turn profile** - tokarka
- **Plasma** - wycinarka plazmowa lub gazowa
Po kliknięciu na jednym z przycisków, ukaże się okno, w którym można wpisać nazwę swojego profilu konfiguracji. Wpisujemy np. „MojaFrezarka_400x250_CSMIO_IP“. W nazwie należy unikać spacji oraz znaków specjalnych (podkreślenie jest dozwolony).

9.2 Instalacja pakietu Microsoft® .Net (starsze systemy operacyjne)

Do poprawnej instalacji wymagane jest połączenie z Internetem. Instalacja odbywa się automatycznie, należy jedynie zatwierdzać kolejne etapy. Po zakończonej instalacji należy zrestartować komputer.

9.3 Instalacja oprogramowania CSMIO/IP

Oprogramowanie dla CSMIO/IP dostarczane jest w formie wygodnego w użyciu instalatora. Proces instalacji jest bardzo szybki i nie zajmuje nawet minuty.

Uruchamiamy plik instalatora.

Klikamy „Next“ i ... znowu „Next“ – nie ma potrzeby modyfikować instalowanych składników.
Następnie możemy wybrać ścieżkę programu Mach3 i czy oprogramowanie ma być instalowane dla wszystkich użytkowników. W większości wypadków zostawiamy ustawienia domyślne i klikamy dwukrotnie „Next”.

Wybór nazwy w menu start, również w większości wypadków nie ma potrzeby nic zmieniać, więc klikamy „Next” i drugi raz „Next” gdy pojawi się podsumowanie.

Po trwającej kilka sekund instalacji pojawi się okno z pytaniem czy uruchomić oprogramowanie służące do aktualizacji sterownika CSMIO/IP. Jeśli nie ma pewności czy w urządzeniu jest aktualna wersja, można od razu dokonać aktualizacji. Aktualizacja została opisana w dodatku B – „Aktualizacja oprogramowania CSMIO/IP”.

Jeśli nie chcemy teraz wykonywać aktualizacji, odznaczamy opcję „Launch CSMIO/IP-A Controller Firmware” i klikamy „Finish”.
Wtyczka (Plugin) programu Mach3 oraz oprogramowanie wewnętrzne sterownika CSMIO/IP-A muszą być w tej samej wersji. W razie potrzeby należy zaktualizować oprogramowanie (tzw. Firmware) sterownika. Operacja aktualizacji opisana jest w dodatku B - „Aktualizacja oprogramowania CSMIO/IP”.

9.4 Prawa administratora w Windows® Vista i Windows® 7.

Zaleca się, by w systemach Windows® Vista, Windows® 7 i Windows® 8 uruchamiać program Mach3 z prawnami administratora.

Otwieramy katalog „C:\Mach3”, odnajdujemy plik Mach3.exe i klikamy prawym przyciskiem myszy. Z menu wybieramy pozycję „Właściwości”, a w oknie, które się otworzy wybieramy zakładkę „Zgodność”.

Następnie zaznaczamy opcję „Uruchom ten program jako administrator” i klikamy „OK”.

Od tej chwili program Mach3 będzie już zawsze uruchamiał się z prawnami administratora.
10 Konfiguracja programu Mach3

Po instalacji oprogramowania należy wszystko skonfigurować, tak by ustawienia odpowiadały sterowanej maszynie oraz całej jej instalacji elektrycznej.

Konfiguracji podlegają między innymi:

- Wyskalowanie każdej osi (tzn. ile impulsów przypada na milimetr/cal).
- Strojenie regulatorów PID osi
- Ustawienie prędkości i przyspieszeń dla każdej osi.
- Przyporządkowanie sygnałów wejścia/wyjścia, takich jak:
 - Sygnały czujników bazujących – HOME
 - Sygnały limitów osi – LIMIT
 - Sygnał stopu bezpieczeństwa – ESTOP
 - Sygnał sondy pomiaru narzędzia/bazowania materiału itp.
 - Dodatkowe sygnały wejściowe, np. przyciski pulpitu itp.
 - Sygnały alarmowe napędów serwo – FAULT
 - Reset napędów – DRV_RESET
 - Załączanie napięcia na napędy – HV_ENABLE
 - Wyjścia sterujące załączaniem wrzeciona, chłodzenia, odciągu wiórów itp.
- Konfiguracja osi zależnej (o ile jest używana w maszynie).
- Konfiguracja używanych skryptów VisualBasic®.
- Ustawienie zakresów osi dla funkcji SoftLimit, czyli krańców programowych.
- Ustawienie prędkości bazowania.
- Ewentualne dostosowanie wyglądu programu.

Konfiguracja to kwestia indywidualna dla każdej maszyny, niemniej w kolejnych podrozdziałach przybliżone zostaną nieco ogólne zasady.

10.1 Utworzenie profilu konfiguracji

Jeśli podczas instalacji nie był utworzony profil konfiguracji (patrz rozdział 9), teraz warto go stworzyć. W profilu tym będą zapisane wszystkie ustawienia konfigurowanej obrabiarki.

Po instalacji programu Mach3 na pulpicie powinna być widoczna ikona, wśród której będzie między innymi „Mach3 Loader”. Należy uruchomić program klikając w tą ikonę. Ukaże się okno ”Session Profile”. W celu utworzenia profilu należy kliknąć na „Create Profile”.

W oknie, które się ukaże wpiszemy nazwę profilu, który chcemy utworzyć. Może to być np. „MojaFrezarka_400x250_CSMIO_IP”. W nazwie należy unikać spacji oraz znaków specjalnych (podkreślnik jest dozwolony). Z listy „Clone from” wybieramy:

- Mach3Mill, jeśli tworzymy profil dla frezarki.
- Mach3Turn, jeśli tworzymy profil dla tokarki.
- Plasma, jeśli tworzymy profil dla wycinarki plazmowej lub gazowej.

Następnie klikamy „OK” – profil został utworzony. W oknie „Session Profile” na razie klikamy „Cancel” – stworzymy jeszcze na pulpicie skrót, który będzie uruchamiał Mach’a z naszą konfiguracją. W tym celu tworzymy kopię ikony „Mach3 Loader” zaznacza ją i wciskając kolejno CTRL+C, a
następnie CTRL+V na klawiaturze. Na powstałej kopii klikamy prawym przyciskiem myszy i wybieramy „Właściwości”. W zakładce „Ogólne” wpisujemy dowolną nazwę, np. „MojaFrezarka”, przechodzimy do zakładki „Skrót” i w polu „Element docelowy” wpisujemy:

C:\Mach3\Mach3.exe /p MojaFrezarka_400x250_CSMIO_IP

Należy zwrócić uwagę, na prawidłowe znaki „/” oraz „\” w odpowiednich miejscach. Nazwa oczywiście może być inna niż „MojaFrezarka…”, ale musi być identyczna jak nazwa założonego uprzednio profilu konfiguracji.

Po wszystkim klikamy „OK” i możemy uruchomić program korzystając z utworzonego skrótu.

10.2 Pierwsze uruchomienie programu

Przed tym testem należy podłączyć przewód Ethernet sterownika z komputerem lub wpiąć go do sieci komputerowej. Załączenie zasilania sterownika musi nastąpić przynajmniej 10 sekund wcześniej.

Przy pierwszym uruchomieniu programu pojawia się okno zatwierdzania licencji.

Należy zaznaczyć pole i wyrazić zgodę klikając przycisk, tak jak pokazano na rysunku obok.

Jeśli plugin obsługiujący sterownik CSMIO/IP-A został poprawnie zainstalowany, zgodnie z opisem z rozdziału 9, pojawi się okno jak poniżej:

Należy wybrać typ kontrolera ruchu – „CSMIO_IP…” oraz zaznaczyć opcję „Don’t ask me again”, która powoduje, że w tym profilu konfiguracji program Mach3 zawsze będzie korzystał z kontrolera CSMIO/IP. Wybór zatwierdzamy przyciskiem „OK”.

Przed przystąpieniem do konfigurowania dalszych parametrów możemy sprawdzić, czy komunikacja ze sterownikiem została poprawnie nawiązana. Klikamy na górne menu „Plugin Control” i wybieramy pozycję „CSMIO_IP plugin”.

CS-Lab s.c. – sterownik CNC CSMIO/IP-A

Strona 53
Ukaże się okno diagnostyczne sterownika CSMIO/IP, w którym między innymi znajduje się kontrolka „Connection status”. Jeśli kontrolka jest koloru zielonego oznacza to, że oprogramowanie jest zainstalowane poprawnie oraz prawidłowo odbywa się komunikacja pomiędzy programem Mach3, a kontrolerem CSMIO/IP.

Jeśli podczas uruchamiania programu Mach3 pokaże się okno „CSMIO/IP connection”, a kontrolka „Connection status” w oknie diagnostycznym mruga na czerwono, oznacza to, że sterownik CSMIO/IP-A nie został odnaleziony w sieci. W takim przypadku sprawdź możliwe przyczyny:

- Przewód Ethernet musi być podpięty do urządzenia przed załączeniem zasilania. Jeśli nie był:
 - Zamknij program Mach3
 - Wylacz zasilanie CSMIO/IP-A
 - Podłącz przewód sieci Ethernet
 - Włącz zasilanie CSMIO/IP-A
 - Odczekaj 10 sekund
 - Ponownie uruchom program Mach3

- Jeśli CSMIO/IP-A jest połączony bezpośrednio z komputerem PC, sprawdź czy ustawienia sieci są prawidłowe. Jak skonfigurować sieć opisano w rozdziale 7. Zamknij program Mach3, sprawdź i w razie potrzeby skoryguj ustawienia, a następnie ponownie uruchom program.

- Czy po załączeniu zasilania urządzenia minęło przynajmniej 10 sekund do uruchomienia programu Mach3? Jeśli nie, zamknij program i uruchom ponownie.

- Można spróbować użyć innego przewodu sieciowego.

Jeśli powyższe porady nie dały rezultatu i w dalszym ciągu nie udaje się nawiązać połączenia, należy skontaktować się z dystrybutorem lub z firmą CS-Lab s.c.
10.3 Konfiguracja osi używanych w maszynie

Na początku należy uaktywnić obsługę osi, których będziemy używać. Wywołujemy pozycję menu „Config à Ports and Pins”, zakładka „Motor Outputs”.

Przy osiach, które są przez nas wykorzystywane klikamy na polach „Enabled” tak, żeby pojawiły się tam zielone haczyki. Osi zależnych nie uaktywniamy w tym oknie.

- **Przykład 1**: Ploter 3 osiowy X, Y, Z.
 - Uaktywniamy osie X,Y,Z.

- **Przykład 2**: Ploter 3 osiowy X,Y,Z + oś obrotowa A, oś Y na dwóch napędach (oś zależna).
 - Uaktywniamy X,Y,Z,A (oś używana jako zależna nie powinna być tu aktywowana).

W przypadku sterownika CSMIO/IP-A w zakładce „Motor Outputs” ustawienia związane z sygnałami STEP/DIR nie mają żadnego znaczenia. Jedynym aktywnym parametrem jest załączenie/wyłączenie osi (kolumna „Enabled”).

Domyślnie osie przyporządkowane są do kolejnych kanałów +/-10V oraz enkoderowych: X‡ [0] / Y‡ [1] / itd. Wpisane w programie Mach3 nr pinów w oknie „Port&Pins” w zakładce „Motor Outputs” nie mają żadnego znaczenia. Chcąc przypisać do osi inne nr kanałów należy zrobić to w konfiguracji plugin’a: menu „Config à Config PlugIns à CONFIG”.

CS-Lab s.c. – sterownik CNC CSMIO/IP-A

Strona 55
10.4 Konfiguracja cyfrowych sygnałów wejściowych

Konfigurację sygnałów wejściowych wywołujemy poprzez menu „Configà Ports and Pins”, wybierając zakładkę „Input Signals”. Pojawi się lista standardowych sygnałów wejściowych, które można przyporządkować do sprzętowych wejść sterownika CSMIO/IP.

Objaśnienie kolumn:

<table>
<thead>
<tr>
<th>Nazwa kolumny</th>
<th>Opis</th>
</tr>
</thead>
</table>
| Enabled | ● Zielony haczyk oznacza, że używamy danego sygnału.
 ● Czerwony krzyżyk oznacza, że dany sygnał nas nie interesuje i nie ma być obsługiwany. |
| Port # | Numer portu wejściowego – dla CSMIO/IP jest to zawsze port nr 10. |
| Pin Number | Numer pinu, oznacza nr wejścia CSMIO/IP, czyli np. wejście 14 sterownika podajemy tu jako pin 14.
 Nie jest to nr pinu w złączu sterownika CSMIO/IP. |
| Active Low | Zmiana polaryzacji sygnału, czyli wybór - czy sygnał ma być aktywny przy 0V lub przy 24V. |
| Emulated | Emulacja sygnału skrótem klawiszowym. W CSMIO/IP-A tylko niektóre sygnały mogą być emulowane: „THC On”, „THC Up”, „THC Dn” oraz „Probe”. |
| HotKey | Skrót klawiszowy dla emulacji sygnału. |

Dokładny opis sygnałów znajduje się w dokumentacji na stronie ArtSoft® www.machsupport.com (w języku angielskim), poniżej przedstawiam jednak krótki opis najważniejszych z nich.

<table>
<thead>
<tr>
<th>Oznaczenie sygnału</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>X++, Y++, Z++, A++, B++, C++</td>
<td>Sygnały sprzętowych limitów dodatnich. Ruch maszyny zostaje bezzwłocznie zatrzymany, gdy na którymś z tych sygnałów pojawi się stan aktywny.</td>
</tr>
<tr>
<td>X--, Y--, Z--, A--, B--, C--</td>
<td>Sygnały sprzętowych limitów ujemnych. Ruch maszyny zostaje bezzwłocznie zatrzymany, gdy na którymś z tych sygnałów pojawi się stan aktywny.</td>
</tr>
<tr>
<td>X Home, Y Home, Z Home, A Home, B Home, C Home</td>
<td>Sygnały bazowania osi. (HOMING)</td>
</tr>
<tr>
<td>INPUT1 – INPUT4</td>
<td>Sygnały wejściowe ogólnego przeznaczenia. Mogą być wykorzystywane np. w skryptach VisualBasic®.</td>
</tr>
<tr>
<td>Probe</td>
<td>Sygnał sondy pomiarowej, np. czujnik pomiaru długości narzędzia</td>
</tr>
<tr>
<td>Index</td>
<td>Index z wrzeciona do pomiaru prędkości obrotowej/gwintowania</td>
</tr>
<tr>
<td>Limit Ovrd</td>
<td>Wymuszenie ruchu, jeśli aktywny jest któryś z sygnałów LIMIT. Przydatne by umożliwić zjazd z wyłącznika krańcowego. Jeśli używamy funkcji Auto Limit Override, ten sygnał nie jest potrzebny.</td>
</tr>
<tr>
<td>EStop</td>
<td>Zatrzymanie awaryjne. Należy zwrócić szczególną uwagę, by ten sygnał poprawnie skonfigurować oraz przetestować jego działanie.</td>
</tr>
</tbody>
</table>
THC On
Do wycinarek plazmowych. Sygnał obecności łuku. Podczas wypalania maszyna automatycznie zatrzymuje się, jeśli sygnał ten przejdzie w stan nieaktywny.

THC Up
Do wycinarek plazmowych. Sygnał dla automatycznej kontroli wysokości palnika, stan aktywny powoduje podnoszenie osi Z.

THC Down
Do wycinarek plazmowych. Sygnał dla automatycznej kontroli wysokości palnika, stan aktywny powoduje opuszczenie osi Z.

OEM Trig 1-15
Zewnętrzne wyzwalanie funkcji. Za pomocą tych sygnałów można zrealizować np. start programu za pomocą przycisku na pulpicie maszyny.

JOG X++, JOG Y++, JOG Z++, JOG A++
Sygnały umożliwiające ruch w trybie ręcznym, poszczególnych osi (ruch w kierunku dodatnim).

JOG X--, JOG Y--, JOG Z--, JOG A--
Sygnały umożliwiające ruch w trybie ręcznym, poszczególnych osi (ruch w kierunku ujemnym).

W przypadku gdy nie jesteśmy pewni, na którym wejściu w CSMIO/IP-A jest podłączony któryś z sygnałów, można z menu „Plugin Control’à CSMIO_IP plugin” wywołać okno diagnostyczne, przejść na zakładkę „Digital IO” i w polu „Digital inputs” znajduje się podgląd stanów wszystkich wejść sterownika. Wystarczy wtedy np. ręcznie naciskając krańcówkę zobaczyć na ekranie, które wejście zmienia stan. Można też obserwować kontrolki LED umieszczone na sterowniku.

Po skonfigurowaniu wszystkich sygnałów wejściowych warto sprawdzić, czy zostało to zrobione poprawnie. W tym celu należy zamknąć okno konfiguracyjne, zatwierdzając przyciskiem „OK” a następnie przejść do ekranu „Diagnostics” (górny pasek przycisków w oknie programu Mach3).

Sprawdź dokładnie działanie sygnału E-STOP zanim przejdiesz do dalszej konfiguracji. Możliwość natychmiastowego zatrzymania maszyny jest bardzo ważna, szczególnie podczas pierwszego uruchomienia i konfiguracji!
W sterowniku CSMIO/IP zaimplementowana została dodatkowo obsługa sygnałów błędów z serwonapędów. Szczegóły w rozdziale „Dodatkowe funkcje konfiguracyjne”.

Od wersji oprogramowania CSMIO/IP v1.07 istnieje możliwość podania takiego samego pinu wejściowego jako LIMIT oraz HOME. Należy wtedy wyłączyć opcję „Home Sw. Safety” w oknie „General Config” w programie Mach3. Przy wyłączonej opcji „Home Sw. Safety” podczas bazowania nie są monitorowane sygnały LIMIT.

10.5 Konfiguracja cyfrowych sygnałów wyjściowych

Wyjścia cyfrowe używane są do takich zadań jak np. załączanie wrzeciona/palnika, załączanie/zwalnianie hamulców elektromagnetycznych silników, załączanie chłodzenia, elektrozaworów itp.

Konfiguracja wyjść odbywa się w zasadzie analogicznie jak konfiguracja wejść.

Objaśnienie kolumn:

<table>
<thead>
<tr>
<th>Nazwa kolumny</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Zielony haczyk oznacza, że używamy danego sygnału. Czerwony krzyżyk oznacza, że dany sygnał nas nie interesuje i nie ma być obsługiwany.</td>
</tr>
<tr>
<td>Port #</td>
<td>Numer portu wejściowego – dla CSMIO/IP-A jest to zawsze port nr 10.</td>
</tr>
<tr>
<td>Pin Number</td>
<td>Numer pinu, oznacza nr wyjścia CSMIO/IP-A, czyli np. wyjście 5 serownika podajemy tu jako pin 5. Nie podajemy tu nr pinu w złączu CSMIO/IP.</td>
</tr>
<tr>
<td>Active Low</td>
<td>Zmiana polaryzacji sygnału, czyli wybór czy sygnał ma być aktywny przy 0V lub przy 24V.</td>
</tr>
</tbody>
</table>

Dokładny opis sygnałów znajduje się w dokumentacji na stronie ArtSoft* www.machsupport.com (w języku angielskim), poniżej przedstawiam jednak krótki opis najważniejszych z nich.

<table>
<thead>
<tr>
<th>Oznaczenie sygnału</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENABLE1-6</td>
<td>Sygnały załączenia osi. Mogą być wykorzystane np. jako sygnały załączające (Servo ON) w serwonapędach. Dla wykorzystywanych osi (patrz 10.3) sygnały te przechodzą w stan aktywny po wciśnięciu</td>
</tr>
</tbody>
</table>
RESET na ekranie Macha. W przypadku gdy Mach przechodzi w stan stopu, sygnały te są wyłączane.

OUTPUT1-20
Wyjścia uniwersalne. Mogą być używane do sterowania wrzecionem, chłodzeniem jak również z poziomu skryptów VisualBasic.

Current Hi/Low
Wyjście ograniczenia prądu, dla silników krokowych. W CSMIO/IP-A sygnał ten jest nieużywany.

Ponownie podczas uruchamiania systemu pomocne może okazać się okno diagnostyczne wywoływane z menu „PlugIn Control”. W zakładce „Digital IO” można podejrzeć aktualny stan sygnałów wyjściowych i dzięki temu ocenić czy ewentualne problemy wynikają ze złej konfiguracji, czy z błędnego połączenia elektrycznego.
10.6 Konfiguracja wrzeciona oraz chłodzenia

Podaje się dwa wyjścia: dla obrotów prawych (M3) oraz obrotów lewych (M4). Trzeba też oczywście odznaczyć pole „Disable Spindle Relays” oznaczające brak obsługi załączania wrzeciona.

W grupie „Flood Mist Control” znajdującej się poniżej w analogiczny sposób konfiguruje się sterowanie załączaniem chłodzenia. Również podać tu można sygnały OUTPUT1-6. Jeśli chcemy korzystać z funkcji sterowania załączaniem chłodzenia trzeba odznaczyć pole „Disable Flood/Mist Relays”. Możliwe są dwa tryby chłodzenia: mgłą(M7) oraz strumieniem(M8). Dla każdego z tych trybów podajemy odpowiedni sygnał wyjściowy. Można też dla obu trybów podać ten sam sygnał, wtedy będzie on załączany zarówno komendą M7 jak i M8 z G-Kodu. Dodatkowo w polu „Delay” można ustawić opóźnienie które ma nastąpić po załączeniu chłodzenia, zanim rozpoczęta zostanie obróbka.

 Ważnym parametrem są też ustawienia zwłoki czasowej przy załączaniu i wyłączaniu wrzeciona. W szczególności wrzeciona wysokoobrotowe potrzebują nieco czasu po załączeniu by rozpędzić się do zadanej prędkości. W grupie „General Parameters” mamy możliwość niezależnego zdefiniowania czasów rozpędzania i hamowania dla obrotów prawych i lewych.

<table>
<thead>
<tr>
<th>CW Delay Spin UP</th>
<th>Czas rozpędzania dla obrotów prawych</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCW Delay Spin UP</td>
<td>Czas rozpędzania dla obrotów lewych</td>
</tr>
<tr>
<td>CW Delay Spin DOWN</td>
<td>Czas hamowania dla obrotów prawych</td>
</tr>
<tr>
<td>CCW Delay Spin DOWN</td>
<td>Czas hamowania dla obrotów lewych</td>
</tr>
</tbody>
</table>

10.6.1 Konfiguracja wyjścia analogowego

Ostatnią rzeczą jaką konfigurujemy w oknie „Ports and Pins” są parametry związane ze sterowaniem prędkością obrotową poprzez wyjście analogowe CSMIO/IP-A. W grupie „ModBus Spindle – use step/dir as well” zaznaczamy pole „Enabled”, w polu „Reg” wpisujemy wartość 64, natomiast w polu „Max ADC count” – wartość 4095. Można teraz zamknąć okno konfiguracyjne „Port and Pins” klikając „Zastosuj” oraz „OK.”.

Do poprawnej obsługi sterowania obrotami trzeba jeszcze podać jaki zakres obrotów posiada nasze wrzeciono (uwzględniając przy tym ustawienia falownika oraz ewentualne przełożenia). Wybieramy pozycję menu „Config → Spindle Pulleys”. Jeśli korzystamy z jednego przełożenia wpisujemy tylko w pola „Min” i „Max” minimalne i maksymalne obroty. Zatwierdzamy „OK.”
Ostatnią rzeczą związaną ze sterowaniem obrotami jest wybór wyjścia analogowego, które zostanie w tym celu użyte.

- Wybieramy z menu „Config ‒ Config PlugIns”
- klikamy „CONFIG” obok „CSMIO/IP”
- Przechodzimy na zakładkę „Spindle”, w grupie „Spindle DAC”
- Zaznaczamy „Enable”
- Z listy „Select Analog Output” wybieramy wyjście analogowe.

Ponownie podczas uruchamiania systemu pomocne może okazać się okno diagnostyczne wywoływane z menu „PlugIn Control”. W zakładce „Analogue IO” można podejrzeć aktualne napięcia na wejściach i wyjściach analogowych. Gdy skonfigurujemy wrzeciono, można w zakładce MDI wprowadzić np. M3(enter), S2000(enter). Powinno to spowodować załączenie wrzeciona (obroty prawe) i ustawienie obrotów na 2000 obr/min. W oknie diagnostycznym będzie widać załączone wyjścia cyfrowe i napięcie na wyjściu analogowym.

Dodatkowo ikona informuje o tym, które wyjście analogowe jest skonfigurowane do sterowania wrzeciona.

Sprawdź dokładnie ustawienia falownika przed załączeniem wrzeciona, nieprawidłowa konfiguracja może spowodować trwałe uszkodzenie wrzeciona, które z reguły nie jest usuwane przez producenta w ramach gwarancji.

Zwróć uwagę czy prawidłowo załącza się obroty prawe/lewe – rozpoczęcie obróbki ze złym kierunkiem obrotów spowoduje zniszczenie narzędzia i/lub obrabianego detalu.

10.6.2 Problematyczna funkcja PWM Control

Częstą przyczyną problemów z wyjściem analogowym jest ustawiona opcja „PWM Control” w programie Mach3. Czasem nie widać na pierwszy rzut oka, że pozycja ta jest zaznaczona, szczególnie gdy nieaktywna jest pozycja „Use Spindle Motor Output”. Poniżej widać prawidłowe i nieprawidłowe ustawienie.

Jeśli „PWM Control” jest zaznaczone, ale nieaktywne, trzeba najpierw zaznaczyć „Use Spindle Motor Output”, następnie kliknąć „Step/Dir Motor” i ponownie odznaczyć „Use Spindle Motor Output”. Zaznaczenie w tym miejscu „Step/Dir Motor” nie oznacza, że wrzeciono będzie obsługiwane poprzez sygnały STEP/DIR. Konfiguracji wrzeciona jako osi dokonuje się w ustawieniach plugina i jest to opisane w dalszej części instrukcji w rozdziale „Dodatkowe funkcje konfiguracyjne w oknie plugin’a”.

Opcja „PWM Control” powinna być odznaczona, gdyż jest niekompatybilna z urządzeniem CSMIO/IP i wprowadza błędy przy sterowaniu obrotami wrzeciona.
10.7 Konfiguracja rozdzielczości, prędkości i przyspieszeń

Przed rozpoczęciem pracy absolutnie konieczne jest poprawne ustawienie rozdzielczości (tzw. wyskalowanie) osi oraz ustawienia ich maksymalnych prędkości i przyspieszeń. Realizuje się to w programie Mach3 w menu „Config Motor Tuning”. Po otwarciu okna najpierw należy wybrać oś, którą chcemy konfigurować, następnie wpisać parametry i kliknąć „SAVE AXIS SETTINGS” by program zapamiętał zmiany. Wtedy można wybrać i ustawić kolejną oś.

Jeśli zapomnimy kliknąć „SAVE AXIS SETTINGS” wprowadzone zmiany zostaną utracone.

Do poprawnego wyskalowania osi trzeba znać przede wszystkim, ile kroków przypada na jednostkę (milimetr, cal, lub stopień – zależnie od używanych jednostek i, czy oś jest skonfigurowana jako liniowa, czy kątowa). W przypadku CSMIO/IP-A ilość kroków to ilość impulsów enkodera na obrót silnika (licząc wszystkie zbocza). Należy też uwzględnić ewentualną przekładnię elektroniczną w serwowzmocniaczu.

By wyjaśnić jak to obliczyć posłużę się następującym przykładem:

- Oś liniowa napędzana jest silnikiem serwo z enkoderem 10000 imp/obrót (licząc wszystkie zbocza).
- Napęd serwo skonfigurowany jest bez przekładni elektronicznej
- Do przeniesienia napędu użyta została śruba kulowa o skoku 10mm
- Brak przełożenia pomiędzy silnikiem, a śrubą.

\[
\text{StepsPer} = \frac{\text{ilość kroków na obrót silnika}}{\text{Posuw liniowy na obrót silnika}}
\]

Na obrót silnika przypada więc 10000imp oraz posuw 10mm. Dzieląc te wartości 10000imp/10mm otrzymujemy wartość 1000imp/mm, którą wpisujemy w polu „Steps Per” w oknie konfiguracyjnym.

W polu „Velocity” konfigurujemy prędkość osi. Jeśli używamy milimetrów jako jednostki prędkość podawana jest w mm/min, jeśli stopni to będzie to stopnie/min, jeśli cali, będą to cale/min. Wartość prędkości maksymalnej jest sprawą bardzo indywidualną, zależy od użytych silników, napędów, mechaniki itd. Do pierwszych testów polecam wpisać stosunkowo małą wartość np. 2000mm/min, w razie gdyby coś szło nie tak, zawsze zdążymy wcisnąć grzybek stopu awaryjnego E-STOP.

W polu „Acceleration” definiujemy przyspieszenie dla osi. Również tutaj jest to bardzo indywidualna sprawa, na początek polecam wpisać wartość około 400mm/s^2. Później podczas testów można dobrać ten parametr doświadczalnie, oceniając pracę maszyny.
Pamiętaj, by po zakończonej edycji dla każdej osi kliknąć „SAVE AXIS SETTINGS”. Konfigurację przeprowadzaj w następującej kolejności:
Otwórz okno „Motor Tuning”‡ Wybierz oś (“Axis Selection”)‡ Wpisz parametry‡ “SAVE AXIS SETTINGS”‡ Wybierz kolejną oś‡ itd. Na końcu zamknij okno klikając „OK”.

Pola „step pulse” oraz „dir pulse” nie mają żadnego znaczenia dla CSMIO/IP. Są one używane przy sterowaniu poprzez port LPT i definiują szerokość i czas impulsów STEP/DIR.
10.8 Konfiguracja kierunków, bazowania oraz limitów programowych

Gdy osie są już wyskalowane i mają skonfigurowane prędkości, ważne jeszcze by poruszały się w dobrych kierunkach. Przydatną funkcją jest też możliwość podania programowych limitów, czyli zakresu roboczego obrabiarki.

Wybieramy z menu pozycję: „Config Homing/Limits”. W oknie dla każdej z osi mamy dostępne następujące parametry konfiguracyjne:

<table>
<thead>
<tr>
<th>Nazwa kolumny</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversed</td>
<td>Przelaczając to pole powodujemy zamianę kierunku ruchu osi.</td>
</tr>
<tr>
<td>Soft Max</td>
<td>Maksymalny zakres ruchu w kierunku dodatnim</td>
</tr>
<tr>
<td>Soft Min</td>
<td>Maksymalny zakres ruchu w kierunku ujemnym</td>
</tr>
<tr>
<td>Slow Zone</td>
<td>W CSMIO/IP-A to pole nie jest używane. W sterowaniu LPT służy do zdefiniowania odcinka, na jakim będzie następować wyhamowanie przy dojazdzie do końca zakresu roboczego. Sterownik CSMIO/IP-A automatycznie oblicza drogę hamowania z uwzględnieniem zdefiniowanego dla osi przyspieszenia. Najlepiej wpisać wartość 0 w tym polu.</td>
</tr>
<tr>
<td>Home Off.</td>
<td>Od wersji oprogramowania v1.07 w polu tym można zdefiniować odległość odjazdu od czujnika HOME po bazowaniu. Gdy wpiszemy np. 5mm sterownik będzie bazował oś na czujnik HOME, po czym odjedzie 5mm i wyzeruje pozycję osi. Można też podać wartość ujemną – w niektórych przypadkach jest to przydatne.</td>
</tr>
<tr>
<td>Auto Zero</td>
<td>Pole to nie jest używane w sterowniku CSMIO/IP-A. Oś po bazowaniu zawsze jest zerowana.</td>
</tr>
<tr>
<td>Speed %</td>
<td>Prędkość bazowania. Podawana jako procent maksymalnej prędkości zdefiniowanej w „Motor Tuning”. Do pierwszych testów zalecam wartość 10%.</td>
</tr>
</tbody>
</table>

Uwaga! – Limity programowe można włączać i wyłączać. Jeśli są wyłączone program w żaden sposób nie kontroluje przekroczenia pola roboczego. Jedynym zabezpieczeniem są wtedy sprzętowe wyłączniki krańcowe LIMIT.

W wersji oprogramowania v2.051 i wyższych można wybrać tryb pracy funkcji „Home Off.”. Domyślnie działa ona jak opisano w powyższej tabeli, jednak po przełączeniu trybu w oknie konfiguracyjnym plugina parametr „Home Off.” nie spowoduje odjazdu, a jedynie ustawia współrzędną maszynową na zadaną wartość po zakończonym bazowaniu.

Wybór działania tej funkcji można dokonać w zakładce „Special Functions/Other”, opcja „Legacy HomeOffset”.

![Konfiguracja kierunków, bazowania oraz limitów programowych](image-url)
Gdy aktywne są limity programowe („Soft Limit” na głównym ekranie Mach’a), sterownik CSMIO/IP-A nie zezwala na żaden ruch jeśli osie maszyny nie są zbazowane. O aktualnym stanie funkcji informuje zielona kontrolka dokoła przycisku „Soft Limit”.
10.9 Funkcje konfiguracyjne w oknie plugin’a

Okno konfiguracyjne wtyczki (plugin’a) jest wywoływane poprzez pozycję menu „Config à Config Plugins” oraz kliknięcie „CONFIG” obok nazwy CSMIO/IP. Jeśli instalowane były sterowniki CSMIO/IP różnych typów, to klikamy „CONFIG” obok tego typu, który aktualnie jest aktywny.

10.9.1 Funkcje specjalne osi

Konfiguracja osi podzielona jest na następujące grupy:

- Servo Alarm Input
- Channels Selection
- Index Homing
- PID Regulator
- Slave Axis Configuration

10.9.1.1 Servo Alarm Input - wejście alarmu serwonapędu

Sterownik CSMIO/IP posiada możliwość autonomicznej reakcji na sygnały błędu z serwonapędów. Napęd może generować błąd np. w przypadku przeciążenia. W przypadku pojawienia się sygnału błędu CSMIO/IP zatrzymuje ruch wszystkich osi w przeciągu 1ms. Warto skonfigurować w serwonapędach funkcję hamulca dynamicznego, co ograniczy odległość jaką oś przebędzie siłą bezwładności.

<table>
<thead>
<tr>
<th>Enabled</th>
<th>Załączenie/wyłączanie funkcji</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Active</td>
<td>Sygnał aktywny w stanie niskim</td>
</tr>
<tr>
<td>Pin</td>
<td>Nr wejścia w sterowniku CSMIO/IP-A</td>
</tr>
</tbody>
</table>

10.9.1.2 Channels Selection - wybór kanału +/-10V oraz kanału enkoderowego

Sterownik CSMIO/IP-A posiada 6 kanałów wyjściowych +/-10V oraz 6 wejść enkoderowych. Domyślnie dla osi X przypisany jest kanał 0, dla Y kanał 1, Z kanał 2... itd.

Do każdej osi można przyporządkować dowolny kanał +/-10V i dowolne wejście enkoderowe. Wyboru wyjścia +/-10V dokonujemy z listy „DAC Output Channel”, natomiast wejście enkoderowe wybieramy z listy „Encoder Input Channel”. Można też w tym miejscu zmienić kierunek liczenia enkodera poprzez kliknięcie opcji „Enc. Reverse Direction”.

C S - L a b s. c. - s t e r o w n i k C N C C S M I O / I P - A

Strona 66
10.9.1.3 Bazowanie z indeksem - Index Homing
Jeśli podłączymy do sterownika sygnał INDEX z serwonapędu, możemy włączyć funkcję dokładnego bazowania z użyciem tego sygnału. Znakomite poprawia to powtarzalność bazowania, nawet, gdy wyłączniki bazujące posiadają spory rozrzut.

<table>
<thead>
<tr>
<th>Enabled</th>
<th>Załączenie/wyłączenie funkcji</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder Pules/Rev</td>
<td>Ilość impulsów na obrót enkodera (licząc wszystkie zbocza)</td>
</tr>
</tbody>
</table>

10.9.1.4 PID Regulator
Przycisk „PID Tuning” otwiera okno strojenia regulatora PID. Strojenie opisane jest w rozdziale 11.

10.9.1.5 Slave Axis Configuration - oś zależna
W dużych obrabiarkach często stosuje się po dwa silniki do obsługi pojedynczej osi – po jednym na stronę. Choć w programie Mach3 istnieje w menu „Config” pozycja do konfiguracji osi zależnych, zastosowano tu jednak autonomiczną obsługę tej funkcji, celem podniesienia poziomu niezawodności.

Parametry konfiguracyjne:

<table>
<thead>
<tr>
<th>Slave</th>
<th>Wybór osi, która ma być zależną od aktualnie wybranej</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Tryb pracy osi zależnej</td>
</tr>
<tr>
<td>Geometry Correction</td>
<td>Wartość korekcji geometrii obrabiarki</td>
</tr>
</tbody>
</table>
Tryby pracy osi zależnej:

<table>
<thead>
<tr>
<th>Tryb</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Correction</td>
<td>Tryb pracy bez korekcji – osie Master i Slave po prostu działają jak „sklejone” ze sobą.</td>
</tr>
<tr>
<td>Read Difference</td>
<td>Odczyt różnicy pozycji bazowania pomiędzy osią Master i Slave. Po wykonaniu bazowania wartość wpisana będzie do pola „Geometry Correction”.</td>
</tr>
<tr>
<td>Sl. Correction</td>
<td>Po wykonaniu bazowania, oś Slave jest na chwilę „uwolniona” i wykonywany jest ruch korekcji geometrii. Umożliwia to np. ustawienie prostopadłości w maszynach bramowych.</td>
</tr>
</tbody>
</table>

W dodatku „A” opisany jest przykład konfiguracji osi zależnej.

Jeśli zamierzasz użyć funkcji osi zależnej przeczytaj dodatek „Przykład konfiguracji osi zależnej”.

Firma CS-Lab s.c. dołożyła wszelkich starań by zapewnić niezawodność działania sterownika CSMIO/IP-A. Firma nie ponosi jednakże żadnej odpowiedzialności za wszelkie uszkodzenia mechaniki wynikające z błędnej konfiguracji, jak i z ewentualnych uszkodzeń, czy błędów programowych sterownika CSMIO/IP-A.
10.9.2 Spindle - Konfiguracja wrzeciona

Sterownik CSMIO/IP posiada szereg dodatkowych funkcji związanych z wrzecionem. Opcje zostały podzielone na następujące grupy:

Spindle DAC	Wybór wyjścia analogowego do sterowania obrotami wrzeciona
Spindle Encoder (CSMIO_ENCOD)	Konfiguracja modułu rozszerzeń CSMIO-ENC
Spindle Alarm Input	Konfiguracja wejścia sygnału alarmu napędu wrzeciona
Spindle Axis	Opcje związane z obsługą wrzeciona poprzez kanał osi (STEP/DIR)

10.9.2.1 Spindle DAC – wyjście sterowania obrotami

| Enabled | Załączenie sterowania obrotami na wyjściu analogowym 0-10V |
| Select Analog Output | Wybór nr wyjścia analogowego |

10.9.2.2 Spindle Encoder – Moduł enkodera wrzeciona

| P/Rev | Ilość impulsów na obrót wrzeciona (licząc wszystkie zbocza) |
| Inv. Direction | Wybór nr wyjścia analogowego |

10.9.2.3 Spindle Axis – Sterowanie wrzeciona poprzez serwonapęd

Enable Spindle Axis	Załączenie funkcji
Reversed Direction	Zamiana kierunku obrotów
Encoder Input Channel	Wybór kanału enkodera dla obsługi wrzeciona. (należy pamiętać, że do obsługi „zwykłych” osi pozostanie już tylko 5 kanałów i wobec tego nie da się wykorzystać 6 osi)
Enc. Reverse Direction	Zmiana kierunku liczenia enkodera
DAC Output Channel	Nr kanału wyjściowego +/-10V
PID Regulator	Strojenie regulatora PID
Align at stop	Automatyczne ustawianie wrzeciona w zadany kącie zawsze po wyłączeniu. Funkcja przydatna szczególnie, gdy
do wymiany narzędzia oś wrzeciona musi być ustawiona w określonej pozycji. „Enabled” załącza funkcję, a poniżej można wpisać kąt, w którym będzie ustawiane wrzeciono.

Speed/Accel Config
Konfiguracja impulsów na obrót silnika napędu wrzeciona, oraz przyspieszenia. Wartość przyspieszenia tutaj wpisywana to czas, w którym wrzeciono będzie osiągać obroty maksymalne (określone w Spindle Pulleys).

10.9.3 Override sources – wybór źródła korekcji prędkości posuwu i obrotów wrzeciona

Program Mach3 umożliwia zmianę prędkości posuwu oraz prędkości obrotowej wrzeciona podczas pracy. Standardowo reguluje się to poprzez dwa suwaki na głównym ekranie. Jeśli obrabiarka wyposażona jest w dodatkowy pulpIt z przyciskami, łatwiej jest regulować prędkości za pomocą pokrętela na nim umieszczonych. Z CSMIO/IP-A można również zrealizować sterowanie prędkością posuwu i obrotów wrzeciona poprzez potencjometry podłączone do wejść analogowych.

Na zakładce „Override sources” można skonfigurować - czy regulacja prędkości ma odbywać się poprzez ekran Mach’a, wejścia analogowe, dodatkowe osie manipulatora MPG itp.

„Feed rate override” dotyczy prędkości posuwu, natomiast „Spindle speed override” dotyczy obrotów wrzeciona.

Dostępne są następujące warianty:

<table>
<thead>
<tr>
<th>Override source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach</td>
<td>Regulacja z komputera PC (suwak na ekranie Mach’a)</td>
</tr>
<tr>
<td>CSMIO/IP AIN 0/1/2/3</td>
<td>Wejścia analogowe sterownika CSMIO/IP</td>
</tr>
<tr>
<td>MPG AIN 0/1</td>
<td>Wejścia analogowe modułu CSMIO-MPG</td>
</tr>
<tr>
<td>MPG AXIS 4/5/6</td>
<td>Oś 4, 5 lub 6 manipulatora MPG</td>
</tr>
</tbody>
</table>

Zarówno dla sterowania prędkością posuwu i obrotów wrzeciona można zdefiniować wejście cyfrowe CSMIO/IP, które będzie wymuszać sterowanie z ekranu Mach3 – „Forced Mach override”.

Dzięki temu wygodnie i szybko można przełączać źródło zadawania prędkości – np. przy pomocy przełącznika umieszczonego na pulpicie obrabiarki.
10.9.4 Plasma – Funkcje dodatkowe wycinarek plazmowych

W obecnej wersji oprogramowania mamy tutaj do dyspozycji jedną funkcję – sterowanie wysokością palnika przy pomocy wejścia analogowego.

Konfiguracja ogranicza się do załączenia funkcji, wyboru polaryzacji oraz wyboru wejścia analogowego.

Funkcja działa w taki sposób, że przy normalnej polaryzacji dla 0V na wejściu analogowym odpowiada korekcja wpisana w THC min, natomiast dla 10V THC max skonfigurowane na ekranie Mach’a3. Dla odwróconej polaryzacji dla 0V odpowiada THC max, dla 10V natomiast THC min.

<table>
<thead>
<tr>
<th>Enabled</th>
<th>Załączenie/wyłączenie funkcji</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversed Polarity</td>
<td>Odwrócenie polaryzacji</td>
</tr>
<tr>
<td>Select input</td>
<td>Wybór wejścia analogowego sterującego wysokością palnika</td>
</tr>
</tbody>
</table>

Uwaga! – Agregaty plazmowe są niebezpieczne z uwagi na wysokie napięcia panujące na elektrodach. Do wejść analogowych CSMIO/IP należy podłączać tylko sygnał galwanicznie izolowany oraz należycie odfiltrowany (dobrze jest umieścić filtr RC w samej wtyczce). Nieumiejętne podłączenie sygnałów z agregatu plazmowego do sterownika CSMIO/IP może skutkować jego uszkodzeniem.

10.9.5 Misc IO – Funkcje specjalne związane z we/wy

10.9.5.1 Servodrive RESET

Dowolne wyjście sterownika CSMIO/IP może być przyporządkowane jako sygnał RESET dla serwonapędów. Na wyjściu będzie pojawiał się krótki impuls za każdym razem gdy w programie Mach3 zostanie wywołana funkcja RESET.

10.9.5.2 HV Enable

W tym miejscu można do dowolnego wyjścia sterownika CSMIO/IP przypisać funkcję załączania napięcia głównego (np. dla serwonapędów). W wielu sytuacjach alarmowych typu np. uaktywnienie sygnału E-STOP, dodatkowo odłączenie zasilania głównego może podnieść bezpieczeństwo.

Wyjście zdefiniowane jako „HV Enable” będzie aktywne podczas normalnej pracy sterownika CSMIO/IP, natomiast w przypadku wszelkich stanów alarmowych takich jak najazd na limit sprzętowy czy E-STOP, sygnał przejdzie w stan nieaktywny.
10.9.5.3 Input signals filter

Zdarza się, że na dużych obrabiarkach poziom zakłóceń elektromagnetycznych jest tak duży, że standardowe sprzętowe filtry montowane w CSMIO/IP nie wystarczają i pojawiają się fałszywe sygnały np. LIMIT, E-STOP itp. powodując przerywanie pracy maszyny.

W takich wypadkach pomocna może okazać się właśnie funkcja filtrowania sygnałów wejściowych. Definiujemy tutaj czas filtrowania. Odradzam stosowanie dużych wartości z uwagi na to, że powstaną opóźnienia reakcji na wejścia cyfrowe.

Jeśli wartości z zakresu 1-15 (4ms – 60ms) nie rozwiązują problemu, przyczyny należy szukać raczej w sprzęcie i jakości okablowania obrabiarki.

Długi czas filtracji może opóźnić reakcję na sygnały alarmowe nawet o 0,4s. Opóźnienie będzie również widoczne podczas bazowania(HOMING) czy pomiaru narzędzia (PROBING), powodując, że oś obrabiarki przebędzie większą odległość po zadziałaniu czujnika.

Jak wspomniano wyżej, raczej nie ma sensu podawanie czasów filtracji większych niż 60ms, a tak małe opóźnienia są w praktyce niezauważalne.

10.9.6 Other – pozostałe funkcje plugin’a

10.9.6.1 MPG multipliers – mnożnik MPG

Jeśli korzystamy z modułu CSMIO-MPG i zewnętrznego manipulatora, możemy przełączać mnożnik posuwu pomiędzy trzema wartościami. W tym miejscu możemy wybrać jakie to będą wartości. Niższy zakres daje lepszą precyzję i bezpieczeństwo – ponieważ w tym wypadku kręcąc enkoderem nie rozpędzimy maszyny do dużych prędkości.

Wyższy zakres będzie bardziej odpowiedni dla wielkogabarytowych ploterów, by w wygodny sposób szybko przemieszczać osie na spore odległości.

10.9.6.2 Axes DeRef & Zero – zerowanie osi po zatrzymaniu awaryjnym

Parametr ten używany jest tylko w sterownikach IP-S i IP-M. W CSMIO/IP-A nie ma on znaczenia.

10.9.6.3 E-STOP requests – zdarzenia alarmowe

W tym miejscu można wyłączyć zatrzymywanie pracy obrabiarki poprzez takie zdarzenia jak:

- Przeciążenie linii wyjściowych (Digital outputs overload)
- Zerwanie komunikacji CANOpen (CANOpen Timeout)

Odznaczenie opcji powoduje, że dane zdarzenie nie będzie zatrzymywalo pracy maszyny.
10.9.6.4 Extras – dodatki

W oprogramowaniu CSMIO/IP zaimplementowano kilka funkcji dodatkowych podnoszących bezpieczeństwo i komfort pracy.

<table>
<thead>
<tr>
<th>Funkcja</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Z-Inh Enable</td>
<td>Automatyczne ograniczenie ruchu osi Z. Umożliwia zabezpieczenie przed uszkodzeniem stołu roboczego obrabiarki. Więcej szczegółów znajduje się w rozdziale 14.1 – Automatyczny pomiar długości narzędzia.</td>
</tr>
<tr>
<td>Smart Limits</td>
<td>Blokowanie ruchu gdy aktywny jest sygnał limitu sprzętowego. Polega to na tym, że np. gdy aktywny jest sygnał X++, osią X możemy poruszyć tylko w kierunku „-“ (w dół).</td>
</tr>
<tr>
<td>Probe protection</td>
<td>Zabezpieczenie czujnika pomiaru narzędzia. Przy aktywnym sygnale Probe blokowany jest ruch ręczny osi Z w kierunku „-“ (w dół). Jeśli sygnał Probe przejdzie w stan aktywny podczas obróbki, maszyna zostanie zatrzymana tak samo jak gdyby wciśnięty został E-STOP.</td>
</tr>
<tr>
<td>Legacy HomeOffset</td>
<td>Zaznaczenie tego pola powoduje zmianę działania funkcji Home Offset. Maszyna po bazowaniu zamiast odjechać o zadaną odległość, wpisze tylko zadaną wartość do współrzędnej maszynowej.</td>
</tr>
</tbody>
</table>

10.9.6.5 CSMIO Connection Properties – dodatkowe opcje połączenia

<table>
<thead>
<tr>
<th>Opcja</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default MAC</td>
<td>Domyślny MAC adres, z którym ma być nawiązywane połączenie. Przydatne jeśli mamy w sieci lokalnej kilka sterowników CSMIO/IP i nie chcemy przy każdym uruchomieniu programu Mach3 wybierać, z którym sterownikiem się połączyć. Wpis ustawiany jest przyciskiem „Set as Default“, a kasowany przyciskiem „Clear Default“.</td>
</tr>
<tr>
<td>Connected MAC</td>
<td>Informacja o MAC adresie sterownika CSMIO/IP, z którym aktualnie nawiązane jest połączenie.</td>
</tr>
<tr>
<td>Name</td>
<td>Nazwa sterownika, z którym aktualnie nawiązane jest połączenie. Można nadać własną nazwę. Będzie ona również wyświetlane w oknie wyboru sterownika, gdy w sieci lokalnej znajduje się więcej niż jeden CSMIO/IP. By nadać nazwę trzeba ją wpisać i kliknąć przycisk „Change Name“.</td>
</tr>
<tr>
<td>Clear Default</td>
<td>Skasowanie domyślnego MAC adresu.</td>
</tr>
<tr>
<td>Set as Default</td>
<td>Ustawienie domyślnego MAC adresu.</td>
</tr>
<tr>
<td>Change Name</td>
<td>Ustawienie prywatnej nazwy dla podłączonego sterownika CSMIO/IP. Nazwa może być dowolna, nie może jednak zawierać spacji i znaków specjalnych - np. „Tokarka01“.</td>
</tr>
</tbody>
</table>
10.10 Wybór jednostek cale/mm
Wybór jednostek, według których skalowane są osie w „Motor Tuning” dokonuje się przez pozycję menu „Config – Select Native Units”. Wybieramy w oknie jednostkę i zamykamy okno klikając na „OK”.
Wybór jednostek, w których odbywa się obróbka odbywa się poprzez komendy G20(cale) i G21(milimetry).

10.11 Wybrane parametry z okna General Config
W menu „Config – General Config” zawarte są podstawowe parametry konfiguracyjne programu Mach3. Wiele z nich nie wymaga modyfikacji, niektóre jednak warto zmodyfikować. Poniżej znajduje się tabela z najważniejszymi parametrami oraz krótkim opisem każdego z nich.

<table>
<thead>
<tr>
<th>Nazwa parametru / grupy</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool Change</td>
<td>Konfiguracja automatycznej zmieniarki narzędzi. Tutaj ważna kwestia: nawet jeśli nie posiadamy automatycznej zmieniarki, ale korzystamy z czujnika pomiaru narzędzia, powinna być zaznaczona opcja „Auto Tool Changer”. W przeciwnym wypadku program Mach3 w ogóle nie będzie brał pod uwagę długości narzędzi.</td>
</tr>
<tr>
<td>Angular Properties</td>
<td>Zaznaczając pola wybieramy, czy oś A, B, C pracuje jako kątowa. Pole niezaznaczone oznacza, że dana oś pracuje jako liniowa.</td>
</tr>
<tr>
<td>Pgm end or M30 or Rewind</td>
<td>Oznacza zachowanie przy końcu programu, komendzie M30 lub komendzie REWIND. Wybór trybu ruchu: ze stałą prędkością (Constant Velocity) lub z zatrzymaniem na każdym odcinku trajektorii (Exact Stop). Tryb pracy Exact Stop może okazać się dokładniejszy w niektórych przypadkach, ale jest dużo wolniejszy. W 99% przypadków używa się trybu Constant Velocity.</td>
</tr>
<tr>
<td>Motion Mode</td>
<td>Format podawania danych dla interpolacji kołowej. Z reguły powinna być zaznaczona „Inc”. Jeśli po załadowaniu trajektorii wygenerowanej programem typu CAM występują problemy z interpolacją kołową (objawiać się to może widocznymi dużymi okręgami w podglądzie 3D), można spróbować przesunąć na „Absolute” i</td>
</tr>
</tbody>
</table>
 ponownie załadować G-kod.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jog increments In cycle mode</td>
<td>Domyślne wielkości posuwów dla pracy krokowej.</td>
</tr>
<tr>
<td>Home Sw. Safety</td>
<td>Tryb bazowania. Z wyłączoną tą opcją proces bazowania (HOMING) jest mniej restykcyjny. Pozwala np. na rozpoczęcie bazowania gdy oś jest już na wyłączniku HOME. Podczas bazowania nie są teżbrane wtedy pod uwagę sygnały LIMIT. Pozwala to na podanie wspólnego źródła sygnału jako LIMIT i HOME. Z zaznaczoną tą opcją realizowane jest tzw. bezpieczne bazowanie, LIMIT'y sąbrane cały czas pod uwagę, nie da się też wywołać bazowania, gdy oś jest już na czujniku HOME.</td>
</tr>
<tr>
<td>Ignore M calls while loading</td>
<td>Ignorowanie makr (komend "M") z pliku g-code podczas jego ładowania. Ta opcja powinna być zaznaczona. Bez tego podczas ładowania pliku maszyna może samoistnie zacząć wykonywać makra.</td>
</tr>
<tr>
<td>Look Ahead</td>
<td>Mach3 realizuje dynamiczną analizę trajektorii z wyprzedzeniem, tak byjak najlepiej dopasować prędkość ruchu w każdym miejscu trajektorii. W polu „Look Ahead” można wpisać ilość linii G-Kodu jakamaja być na próżd analizowana. W większości wypadków wartość 1000 jest w zupełności wystarczająca, aby ruch był całkowicie płynny nawet podczas realizacji dynamicznych i szybkich programów.</td>
</tr>
<tr>
<td>Run Macro Pump</td>
<td>Gdy zaznaczona jest ta opcja, w katalogu ze skryptami VisualBasic można stworzyć plik macropump.m1s, makro tam zawarte będzie wywoływane cyklicznie kilka razy na sekundę.</td>
</tr>
<tr>
<td>Home slave with master axis</td>
<td>W zamyśle twórców Mach’a jest to opcja, która włącza/wyłącza bazowanie osi zależnej razem z ośią master. W CSMIO/IP-A oś zależna zawsze jest bazowana razem z ośią master.</td>
</tr>
<tr>
<td>G04 Dwell in ms</td>
<td>Przy zaznaczonej tej opcji parametr opóźnienia dla G04 jest w milisekundach. Przydatne, gdy potrzebne jest precyzyjne opóźnienie o stosunkowo krótkich czasach – np. w wycinarkach plazmowych.</td>
</tr>
<tr>
<td>Use watchdogs</td>
<td>Nie używać – funkcja ta teoretycznie ma „pilnować” różne moduły programu i w razie problemów wywołać STOP awaryjny. W praktyce jednak nie działa całkiem poprawnie i może sprawiać problemy. W oprogramowaniu CSMIO/IP-S są specjalne algorytmy, które autonomicznie monitorują komunikację i pracę całego systemu sterowania.</td>
</tr>
<tr>
<td>CV Control</td>
<td>Parametry dla trybu pracy ze stałą prędkością – Constant Velocity. Domyślnie wszystkie pola powinny być odznaczone. Czasem jednak konieczne jest zmodyfikowanie ustawień CV. Np. gdy przyspieszenia obrabiarki są niskie, a obróbka odbywa się z dużymi prędkościami tryb CV może powodować, że naroża ścieżki będą zaokrąglane. Można ustawić tolerancję trybu CV poprzez zaznaczenie opcji „CV Dist Tolerance” i wpisanie maksymalnej odchyłki od zadanego kształtu.</td>
</tr>
<tr>
<td>Rotational</td>
<td>Parametry w tej grupie dotyczą osi kątowych(obrotowych). „Rot 360 rollover” decyduje czy ma następować przewinięcie przy przekroczeniu 360 stopni. „Ang short rot. On G0” powoduje, że przy ruchu przestawczym G0 obrót może być skracany. Czyli gdy oś ma w danej chwili np. 320° i ma dojechać do 0°, nie będzie cofała się 320° tylko obróci się o 40° w prawo. Z kolei parametr „Rotational soft limit” decyduje czy dla osi obrotowych również mają byćbrane pod uwagękrąćówki programowe – soft limit.</td>
</tr>
<tr>
<td>Enchanced pulsing</td>
<td>Parametr ten dla sterownika CSMIO/IP-A nie ma żadnego znaczenia.</td>
</tr>
<tr>
<td>Screen control</td>
<td>Zaznaczenie w tej grupie parametrów „Hi-Res screens” i „Auto screen enlarge” powoduje powiększenie ekranu Mach’a dopasowując jego wielkość do rozdzielczości ekranu. Często jednak wtedy interfejs jest nieproporcjonalnie rozciągnięty i lepiej wyłączyć wyżej wymienione opcje.</td>
</tr>
</tbody>
</table>
11 Regulator PID

11.1 Czym jest regulator PID

W przeciwieństwie do silników krokowych, które sterowane są można powiedzieć „na ślepo”, serwonapędy pracują w tzw. pętli zamkniętej, czyli sterując silnikiem sprawdzają czy jego pozycja jest zgodna z zadana. Jeśli rzeczywista pozycja wirnika odbiega od spodziewanej, wprowadzana jest korekta prądu by zniwelować zaistniały błąd. Silnik po prostu zwalnia jeśli wyprzedził zadaną pozycję, lub przyspiesza, żeby nadgonić, jeśli zadana pozycja wyprzedziła rzeczywistą. To tak jak byśmy jadąc samochodem chcieli zrównać się z innym, który jedzie pasem obok. Jeśli nam ucieka – dodajemy gazu, jeśli my uciekamy w przód – ujmujemy gazu. Co się jednak stanie, jeśli samochód, z którym chcemy się zrównać nie ułatwia nam zadania i sam co chwilę zwalnia i przyspiesza, a do tego sami jesteśmy nerwowi i przesadnie na przemian wciskając do oporu pedal gazu lub hamulec? Stanie się to, że ciągle będziemy się mijać ze ściganym autem, większość czasu będąc od niego w sporej odległości. Przekładając tę analogię na obrabiarkę numeryczną okazałoby się, że osie nie trzymają się zadanej ścieżki ruchu i powstawałyby spore niedokładności obróbki.

Serwonapędy wymagają więc, by korekta na powstający błąd pozycji była jak najszybsza oraz jak najbardziej precyzyjna. Siegając do porównania z autami, chodzi o to, by kierowca w ścigającym aucie był jak najbardziej doświadczony, by umiał przewidywać zachowanie ściganego auta oraz miał precyzyjnie reagować na sytuację. W serwonapędach tym „kierowcą” jest właśnie regulator PID. Regulator ten to matematyczny algorytm, który odpowiada za reakcję silnika na powstające odchyłki od zadanej pozycji. Nazwa PID wywodzi się od poszczególnych bloków regulatora:

- **Proportional** - człon proporcjonalny
- **Integral** - człon całkujący
- **Derivative** - człon różniczkujący
11.2 Działanie poszczególnych członów regulatora

Matematycznych opisów działania regulatora PID są w sieci dziesiątki tysięcy, tyle, że dla większości ludzi są one po prostu delikatnie mówiąc mgliste, a w praktyce nic nie tłumaczą. W tym podrozdziale człony regulatora PID zostaną przedstawione w kilku słowach, tak by można było pojąć logikę ich działania.

11.2.1 Człon proporcjonalny – P

Jest to chyba najprostsza część składowa regulatora. Powoduje ona, że korekcja jest tym większa im większy błąd pozycji. Błąd obliczany jest w następujący sposób:

\[P_{err} = P - P_{enc} \]

Gdzie:

- \(P_{err} \): Błąd pozycji
- \(P \): Aktualna pozycja zadana
- \(P_{enc} \): Aktualna pozycja rzeczywista z enkodera

Wyjście członu obliczane jest wzorem:

\[OUT_P = K_p * P_{err} \]

Gdzie:

- \(OUT_P \): Wyjście członu proporcjonalnego
- \(K_p \): Wzmocnienie członu proporcjonalnego
- \(P_{err} \): Błąd pozycji

Załóżmy, że zadana pozycja = 0, \(K_p = 10 \) i przeanalizujmy sytuację dla kilku różnych pozycji rzeczywistych silnika:

- Pozycja silnika = 0: Błąd jest zerowy, więc człon 'P' ma również wyjście zerowe czyli brak korekcji (bo nie jest potrzebna).
- Pozycja silnika = 1: Błąd = (0 – 1) = -1. Wyjście regulatora = 10 * -1 = -10.
- Pozycja silnika = 5: Błąd = (0 – 5) = -5. Wyjście regulatora = 10 * -5 = -50.
- Pozycja silnika = -5: Błąd = (0 – (-5)) = 5. Wyjście regulatora = 10 * 5 = 50.

Z powyższych przykładów widać dokładnie, że siła korekcji rośnie wraz z błędem, a kierunek korekcji jest przeciwny do kierunku błędu. Ta część regulatora jest skuteczna przy większych wartościach błędu, natomiast przy małych wartościach błędu radzi sobie słabo.

11.2.2 Człon całkujący – I

Dla niektórych użytkowników, niezaznajomionych z matematyką, całka może brzmieć groźnie, w rzeczywistości jednak działanie tego członu jest bardzo proste. Wyjście tego członu regulatora PID zależy od błędu pozycji i czasu trwania tego błędu. Zauważmy, że człon proporcjonalny usunął większość błędu pozycji, ale na wskutek tarcia pozostawał niewielki błąd – np. 10 imp. Enkodera. Przy tak małym błędzie człon proporcjonalny nie koryguje mocno i jego wyjście nie jest w stanie pokonać tarcia. Silnik więc stoi, a błąd pozostaje. Tutaj właśnie do akcji wkracza człon 'I'. Dla uproszczenia załóżmy, że regulator pracuje raz na sekundę, a \(K_i \) (wzmocnienie) = 1. W takiej sytuacji wyjście członu 'I' będzie wyglądało następująco:

- Czas t=0s: wyjście = 0
• Czas t=1s : wyjście = 10
• Czas t=2s : wyjście = 20
• ...
• Czas t=10s : wyjście = 100

Z powyższego przykładu widać, że nawet niewielki błąd może wywołać dużą wartość korekcji, jeśli występuje przez dłuższy czas. W praktyce do czynienia mamy nie z sekundami, lecz z ułamkami sekund, gdyż regulatory PID pracują od kilkuset do kilku tysięcy razy na sekundę.

Łącząc człony 'P' oraz 'I' otrzymujemy regulator, który natychmiast reaguje na duże wartości błędu (P), a pozostałe niewielkie odchyłki koryguje z niewielkim opóźnieniem (I). Wszystko zaczyna działać więc całkiem sprawnie.

11.2.3 Człon różniczkujący – D

Po przeczytaniu opisu członów ‘P’ oraz ‘I’ można dojść do wniosku, że nic więcej nie jest już potrzebne. W wielu wypadkach jak najbardziej jest to prawda i w praktyce bardzo często wzmocnienie członu różniczkującego ‘D’ jest ustawione na 0, co powoduje jego pominięcie.

11.2.4 „Szósty” zmysł – czyli tajemniczy parametr K_{VFF}

Skąd ten dodatkowy parametr, skoro omówione zostały już wszystkie części składowe regulatora PID? Tak naprawdę nie jest to żaden dodatkowy człon regulatora, a raczej pewien element, który ułatwia regulatorowi PID pracę.

Wnikliwie przyglądając się opisom trzech składowych regulatora PID można dostrzec, że wyjście każdego członu uzależnione jest od błędu pozycji. Regulator więc nie działa, jeśli błąd pozycji równy jest zero. Problem polega na tym, że chcemy, by błąd był jak najmniejszy, a najlepiej właśnie równy zero, bo to oznacza najlepszą dokładność pracy.

Tutaj z pomocą przychodzi parametr K_{VFF}, który reaguje z wyprzedzeniem, zanim jeszcze powstanie błąd pozycji. Oczywiście działanie z wyprzedzeniem opiera się na przewidywaniu, a przewidywanie nigdy nie jest pewne w 100%, wobec tego właściwie błąd pozycji powstanie i PID będzie miał ce robić, w praktyce jednak dobrze dobrane wzmocnienie K_{VFF} jest w stanie zmniejszyć chwilowe błędy pozycji nawet 10-cio krotnie!
11.3 Rzeczywisty regulator w CSMIO/IP-A

W praktyce stosuje się tzw. regulatory kaskadowe, które znacznie lepiej korygują błędy podczas dynamicznej pracy. Regulator kaskadowy to po prostu najczęściej trzy regulatory PID połączone ze sobą szeregowo.

W rzeczywistości kompletna pętla regulacji dla CSMIO/IP-A i serwowzmacniacza wygląda następująco:

<table>
<thead>
<tr>
<th>CSMIO/IP-A</th>
<th>SERVO-AMPLIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAJECTORY</td>
<td>V_{FF}</td>
</tr>
<tr>
<td>POSITION</td>
<td>P</td>
</tr>
<tr>
<td>VELOCITY</td>
<td>P</td>
</tr>
<tr>
<td>CURRENT</td>
<td>P</td>
</tr>
</tbody>
</table>

Szarym kolorem zaznaczono parametry, których z reguły nie trzeba regulować. Zaznaczony też został podział, gdzie jakie regulatory się znajdują. Widać, że w sterowniku CSMIO/IP-A znajduje się tylko regulator pozycji oraz człon „przewidujący” – „V_{FF}”. Regulatory prędkości i prądu znajdują się w serwowzmacniaczu.

11.4 Kolejność strojenia regulatorów

Strojenie regulatora kaskadowego zawsze zaczyna się od strony silnika. Najczęściej otrzymujemy komplet silnik serwo + serwowzmacniacz jako komplet i nie ma potrzeby strojenia regulatora prądu, stroimy więc kolejno:

- Regulator PID prędkości (w serwowzmacniaczu)
- Regulator PID pozycji (w sterowniku CSMIO/IP-A)
- Człon przewidujący „V_{FF}” (w sterowniku CSMIO/IP-A)

Bardzo często popełnianym błędem jest strojenie regulatora PID w sterowniku CSMIO/IP-A przy nienastrojonym regulatorze PID w serwowzmacniaczu. W takiej sytuacji poprawne zestrojenie systemu jest NIEMOŻLIWE.
11.5 Okno strojenia „PID Regulator Tuning”

Strojenie regulatora przeprowadzamy w specjalnym oknie strojenia regulatora PID. Klikamy menu „Config” Config Plugins" oraz „CONFIG" przy CSMIO/IP-A. Następnie wybieramy oś i klikamy “PID Tuning”.

Na początek krótkie omówienie parametrów i funkcji dostępnych w oknie PID Regulator Tuning.

Grupa Manual Tuning – strojenie ręczne:

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>kP</td>
<td>Wzmocnienie członu proporcjonalnego</td>
</tr>
<tr>
<td>kI</td>
<td>Wzmocnienie członu całkującego</td>
</tr>
<tr>
<td>kD</td>
<td>Wzmocnienie członu różniczkujące</td>
</tr>
<tr>
<td>kVff</td>
<td>Wzmocnienie członu przewidywania (prędkościowego)</td>
</tr>
<tr>
<td>Max I accumulator</td>
<td>Maksymalna wartość akumulatora całkowania (domyślnie można tu wpisać 1000000)</td>
</tr>
<tr>
<td>Max following error</td>
<td>Maksymalny dozwolony błąd pozycji. Jeśli odchyłka przekroczy tą wartość zostanie wywołany błąd ePID fault</td>
</tr>
<tr>
<td>DeadBand</td>
<td>Obszar „martwy” regulacji. Najczęściej „0”. Jeśli występują problemy z buczeniem osi podczas postoju, można spróbować wpisać tutaj małą wartość, np. 3</td>
</tr>
<tr>
<td>DAC Offset</td>
<td>Ustawienie poziomu neutralnego na wyjściu +/-10V, czyli napięcia, przy którym silnik stoi w miejscu. Źle ustawiony ten parametr będzie powodował stuki podczas załączania osi maszyny i może pogarszać ogólną jakość regulacji. Klikając ikonę obok wartości można ustawić ten parametr automatycznie.</td>
</tr>
</tbody>
</table>

| Ustawienie aktualnego napięcia wyjściowego jako DAC Offset. |

Apply
Wysłanie wartości parametrów do sterownika / załączenie serwonapędów i uzbrojenie PID’ów.

E-STOP
Zatrzymanie awaryjne / wyłączenie napędów i rozbrojenie PID’ów

Grupa Move Axis – automatyczna jazda do pozycji:

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos (mm or inch)</td>
<td>Pozycja docelowa ruchu</td>
</tr>
<tr>
<td>Speed [%]</td>
<td>Prędkość ruchu jako % maksymalnej prędkości osi</td>
</tr>
<tr>
<td>Acc [%]</td>
<td>Przyspieszenie ruchu, jako % maksymalnego przyspieszenia</td>
</tr>
<tr>
<td>Tryb ruchu do podanej pozycji</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>Tryb ruchu do zadanej pozycji i powrót do pozycji początkowej</td>
<td></td>
</tr>
<tr>
<td>Tryb ruchu ciągłego: do zadanej pozycji, do pozycji początkowej, do zadanej pozycji ... itd.</td>
<td></td>
</tr>
</tbody>
</table>

Start
Wykonanie ruchu

Autotuning – strojenie automatyczne:

<table>
<thead>
<tr>
<th>Rrigidity</th>
<th>Ustawienie docelowej sztywności strojenia. Domyślnie 50%.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>Rozpoczęcie trybu autostrojenia</td>
</tr>
</tbody>
</table>

Jog – ruch ręczny:

<table>
<thead>
<tr>
<th>Feedrate [%]</th>
<th>Ustawienie prędkości ruchu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dowolna kierunek -</td>
<td>Jazda w kierunku -</td>
</tr>
<tr>
<td>Dowolna kierunek +</td>
<td>Jazda w kierunku +</td>
</tr>
</tbody>
</table>
Monitor – podgląd stanu osi:

<table>
<thead>
<tr>
<th>Monitory</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>On position</td>
<td>Kontrolka informująca o tym, że oś nie wykonuje żadnego ruchu i jest na pozycji docelowej</td>
</tr>
<tr>
<td>Actual error</td>
<td>Aktualna wartość odchyłki od pozycji zadanej (ilość impulsów enkodera)</td>
</tr>
<tr>
<td>Max error</td>
<td>Maksymalny chwilowy błąd jaki wystąpił (ilość impulsów enkodera)</td>
</tr>
<tr>
<td>Axis position</td>
<td>Aktualna pozycja osi (w mm lub calach)</td>
</tr>
</tbody>
</table>
11.6 Procedura ręcznego strojenia regulatora PID w CSMIO/IP-A

Czytając opis regulatora PID z poprzedniego podrozdziału, łatwo sobie wyobrazić jak poszczególne czynniki radzą sobie z błędem pozycji. Jest jednak pewien „haczyk”. Każdy, ze wspomnianych członów posiada parametr regulujący jego wzmocnienie. Źle dobrane wzmocnienie danego członu spowoduje, że nie będzie on działał prawidłowo, powodował drgania, hałas, a w skrajnych wypadkach nawet uszkodzenie mechaniki maszyny.

Choć poprawne zestrojenie maszyny nie jest sprawą wielce trudną, w praktyce, żeby zrobić to naprawdę dobrze, bardzo przydatne jest doświadczenie. Początkującym instalatorom, którzy wcześniej mieli do czynienia np. tylko z silnikami krokowymi, procedura strojenia może przysporzyć niemało kłopotu. Jeśli nie czujesz się na siłach, lepiej poszukać pomocy bardziej doświadczonej osoby.

By móc zająć się strojeniem regulatora PID w sterowniku CSMIO/IP-A, uruchamiana obrabiarka powinna być wstępnie skonfigurowana, a w szczególności uruchomione i posprawdzone powinny być sygnały we/wy, E-STOP oraz prędkości, wyskalowanie i przyspieszenia osi.

Pamiętaj o nastrojeniu najpierw serwowzmocniacza, gdyż w przeciwnym razie nie będziesz w stanie poprawnie nastroić regulatora w CSMIO/IP-A.

Podczas strojenia najbezpieczniej mieć podłączony silnik tylko jednej (strojonej) osi. Pozostałe silniki odłączyć, lub wyłączyć zasilanie ich serwowzmocniaczy.

- W pierwszej kolejności wpisz jakieś małe wartości wzmocnień na początek. Może być tak jak na rysunku powyżej: kP=1000, ki=15, kd=0, kVff=0. Max I Accumulator na 1000000. Maksymalny błąd ustaw duży (wartość odpowiadająca 1–2 obrotom silnika).
• Załącz oś, klikając na „Apply / (RESET)”. Jeśli oś wpadnie w oscylacje, kliknij E-STOP, a następnie wpisz kP=500, kI = 1. Jeśli następuje szarpnięcie i napęd się wyłącza może oznaczać to źle skonfigurowany kierunek liczenia enkodera, spróbuj wtedy przejść do konfiguracji osi i zmienić kierunek liczenia. Jeśli serwo się załączyło i oś stoi w miejscu można przejść do następnego punktu.

• Ustaw Jog Feedrate na małą wartość np. 5% i spróbuj poruszyć oś klikając

• Kliknij na przycisk automatycznego ustawienia „DAC Offset”.

• Stopniowo zwiększaj wzmocnienie kP, jednocześnie ruszając ośią (prędkość ruchu ustaw na ok. 50%). Do poruszania ośią można skorzystać z funkcji ruchu ciągłego. Nie trzeba wtedy cały czas pilnować by nie wyjechać poza obszar roboczy. Gdy usłyszysz pierwsze objawy przestępowania (wibracje, buczenie), zmniejsz wartość kP o 15% i tak pozostaw.

Jako, że w serwonaśpędach najczęściej stosuje się regulator z członami „P” oraz „I” do prędkości, w CSMIO/IP-A do regulacji pozycji teoretycznie powinien wystarczyć sam parametr „P”, doświadczenie jednak pokazuje, że zestrojenie członu „I” w CSMIO/IP-A podnosi jakość pozycjonowania, niezależnie od zastosowanego regulatora w serwowzmacniaczu. Wobec tego przejdź do kolejnego punktu – strojenia członu I.

• Procedura jest identyczna jak dla członu kP. Stopniowo zwiększaj wzmocnienie kI, jednocześnie ruszając ośią. Gdy usłyszysz pierwsze objawy przestępowania (wibracje, buczenie), zmniejsz wartość kI o 15% i tak pozostaw.

• kD w większości wypadków można ustawić na „0”. Tego parametru można użyć w przypadku, jeśli sporadycznie oś ma tendencję do wpadnięcia w oscylacje. Ten parametr przyjmuje raczej duże wartości czyli jeśli chcemy go użyć to zaczynalbym od wartości 50000 i większych. W tym wypadku nie stojmy w górę do pojawienia się oscylacji. Zamiast tego ustawiamy wartość i sprawdzamy czy oś przestała już mieć tendencję do oscylacji. Jeśli ma nadal to zwiększamy kD o kolejne 50000 itd.
Następnie stroimy kVff. Ponownie włącz ruch w cyklu ciągłym 🔄. Najlepsze są krótkie ruchy, gdyż błąd pozycji największy jest na nawrotach. Obserwuj na wykresie błąd pozycji (czerwona linia) i zwiększaj (o +1) parametr kVff. Amplituda błędu będzie wyraźnie maleć do pewnego momentu, a później znów rosnąć. Znajdź wartość kVff, przy której amplituda błędu jest najniższa.

Podczas strojenia pamiętaj, by po zmianie jakiejkolwiek wartości kliknąć na „Apply”, dopiero wtedy wartości są zatwierdzone i wysyłane do sterownika CSMIO/IP-A.

Na tym etapie regulator PID jest już nastrojony. Możesz teraz zmniejszyć max. dozwolony błąd pozycji („Max following error”). Możesz ustawić wartość 4 x wartość pola „Max Error” z grupy monitor.

Zamknij okna konfiguracyjne, ustawienia zostaną zapisane na dysku. Zamknij program Mach3 i wyłącz system. Podłącz silnik kolejnej osi i przystąp do strojenia według identycznej procedury.

11.7 Strojenie PID – uwagi praktyczne

Przy odrobinie wprawy ręczne nastrojenie regulatora zajmuje 3 minuty i daje lepsze efekty niż 95% przypadków użycia strojenia automatycznego. Są czasem jednak pewne problemy nietypowe, które mogą utrudnić życie. Poniżej kilka przypadków „z doświadczenia”.

11.7.1 Oś zależna

W przypadku osi zależnej należy stroić stronę „Master” i „Slave” na przemian podchodząc w górę ze wzmocnieniami. W większości przypadków najlepiej mieć równie wzmocnienia po str. „Master” i „Slave”, chyba, że mamy różne silniki, lub gdy występują znaczne różnice w bezwładności czy tarciu. Jeśli stromy oś, która jest bramą np. plotera, czy frezarki Bramowej, należy ustawić wrzeciono na środku Bramy, by przy strojeniu wyrównać bezwładność.

11.7.2 Oś z listwami zębatymi (zęby proste)

Listwy zębate nie są „lubiane” przez serwonaşędę. Wahania momentu obrotowego pochodzące od zębatki powodują powstawanie rezonansu przy pewnych prędkościach i bardzo ciężko sobie z tym poradzić. Im ostrzejszy PID tym większy rezonans, im łagodniejszy PID (mniejsze wzmocnienia), tym słabszy rezonans, ale gorsze pozycjonowanie. Ratować się tutaj można parametrem kD, który posiada pewne właściwości tłumiące. Zależnie od użytego serwowzmacniacza, można spróbować użyć wbudowanych filtrów cyfrowych, choć filtry często również potrafią bardzo pogorszyć pozycjonowanie. Jeśli już filtry mają być użyte, to mocno zalecam bardzo małe wartości tłumienia.
Bardzo ważne jest by przy takim systemie przenoszenia napędu użyta była odpowiednia przekładnia. Zdarzało mi się stroić maszyny, w których konstruktor użył silnika bez przekładni i okazywało się, że po pierwsze moc silnika wykorzystywana jest tylko w 15%, a brakowało za to bardzo mocno momentu obrotowego (taka sytuacja ma miejsce, jeśli osiągnięto nominalnej prędkości osi ma miejsce przy osiągnięciu 15% wartość obrotów nominalnych silnika serwo). Brak, lub zbyt małe przelożenie utrudnia lub czasem wręcz uniemożliwia poprawne zestrojenie osi z listwą zębatą. Przelóżenie powinno być tak dobrane, żeby projektowana prędkość nominalna osi wypadała przy nominalnych obrotach serwo silnika.

11.7.3 Głośne dźwięki przy postoju
Dość częstą przypadłością serwonapędów jest wydawanie nieco denerwujących dźwięków w momencie, gdy silniki stoją. Nie ma na to „złotego środka”, ale w większości wypadków można sobie z tym poradzić poprzez:

- Nieznaczne zmniejszenie wzmocnienie i podniesienie wartości \(k_D \).
- Filtr cyfrowy w serwowzmacniaczu (tylko małe wartości tłumienia)
- Ustawienie wartości DeadBand na małą wartość – np. 3

11.7.4 Nie udaje się zacząć strojenia, bo nie udaje się poruszyć w ogóle osią
Jeśli silnik w ogóle nie chce pracować, trzeba zacząć od sprawdzenia serwowzmacniacza. Odlączyć sygnał zadawania prędkości od CSMIO/IP-A i załączyć oś. Do przewodów podłącz baterię AA (1.5V) silnik powinien zacząć się obracać. Zamieść polaryzację baterii i podłącz ponownie, silnik powinien obrać się w drugą stronę. Jeśli tak się nie dzieje, to sprawdź sygnały sterujące serwowzmacniacz, z reguły potrzebny jest sygnał „Enable” do załączenia końcówki mocy, różnie może się ten sygnał nazywać, trzeba sprawdzić dokładnie w dokumentacji. Czasem serwowzmacniacze posiadają też osobne wejścia E-STOP oraz LIMIT, które mogą blokować pracę.

11.7.5 Oś po załączeniu szarpie lub zaczyna poruszać się z maksymalną prędkością.
W takich sytuacjach w pierwszej kolejności należy sprawdzić enkoder. Kierunek liczenia (patrz opis strojenia), połączenia elektryczne pomiędzy silnikiem, a serwowzmacniaczem, połączenia sygnału enkoderowego pomiędzy serwowzmacniaczem, a CSMIO/IP-A.
Czasem dziwne efekty daje też pomylenie faz silnika, lub sygnałów HALL (jeśli są używane).

11.7.6 Oś nie daje się dobrze nastroić
Zdarza się, że mimo długiego czasu spędzonego na strojeniu oś pracuje źle, buczy, drga podczas ruchu itp. Często przyczyna leży gdzieś w podłączeniu sygnału analogowego +/-10V do serwowzmacniacza. Gdy mamy 3 osie i w jednej odwróćmy polaryzację sygnału analogowego, może pojawić się problem z masą (zależnie od typu wejścia w serwowzmacniacz) i takie dziwne efekty mogą się występować. Przyczyną może być marne jak osie nie ekranowany przewód, lub że wykonana instalacja elektryczna (pętla masowa itp.). Oczywiście może okazać się, że serwowzmacniacz, lub sterownik uległ uszkodzeniu (choć są to bardzo rzadkie przypadki). Warto dla pewności, przepiąć oś na inny kanał enkoderowy i analogowy +/-10V. Można też spróbować zamienić serwowzmacniacze pomiędzy osiami by zlokalizować po której stronie leży przyczyna problemów.
11.8 Autotuning – Automatyczne strojenie regulatora PID

Sterownik CSMIO/IP-A jest wyposażony jest również w funkcję automatycznego strojenia regulatora PID, wywołać ją można z okna strojenia PID’a – „Config‡ Config PlugIns‡ CONFIG” ‡ „PID Tuning”.

Przed załączeniem funkcji strojenia automatycznego osie powinny być wyskalowane, oraz powinno być skonfigurowane przyspieszenie i prędkość maksymalna osi w oknie „Config‡ Motor Tuning”.

Do funkcji autostrojenia konfiguruje się tylko jeden parametr – sztywność(Rigidity). Im większa wartość tego parametru, tym „ostrzej” będą dobierane parametry wzmacnienia, ale większe będzie ryzyko wystąpienia oscylacji. Generalnie zaleca się pozostawienie suwaka w pozycji środkowej.

Przed rozpoczęciem autostrojenia należy jeszcze wpisać dużą wartość np. „1000000” w polu „Max I accumulator” oraz ustawić spory dozwolony błąd w polu „Max following error” – np. 10000 imp.

Bardzo często popełnianym błędem jest próba wykonania autostrojenia przy źle nastrojonym regulatorze PID prędkości w serwowzmocniaczu. Źle nastrojony serwowzmocniacz powoduje, że prawidłowe nastrojenie regulatora w CSMIO/IP-A jest NIEMOŻLIWE. Serwowzmocniacz powinien być strojony w pierwszej kolejności, dopiero potem strojenie CSMIO/IP-A. Należy pamiętać też, że autostrojenie w serwowzmocniaczach często działa bardzo mizernie i nie dobiera nawet w przybliżeniu poprawnych parametrów.

Funkcja autostrojenia wymaga by oś była w ruchu. Należy zapewnić miejsce ręcznie ustawiając oś na środku obszaru roboczego.

Serwonapęd podczas strojenia może wykonywać gwałtowne ruchy, oraz wpasać w głośne oscylacje. Przed rozpoczęciem strojenia automatycznego sprawdź działanie przycisku E-STOP i bądź gotowy do szybkiego jego wciśnięcia.
Po uruchomieniu funkcji os zacznie wykonywać ruch w obie strony na przemian, w międzyczasie analizując błąd położenia i dobierając parametry. Lekkie oscylacje i wibracje są rzeczą normalną i należy spokojnie poczekać do zakończenia działania funkcji.

Gdy ruch ustanie, oznacza to, że strojenie zostało zakończone. Można wtedy sprawdzić pracę osi poruszając ją klawiszami w grupie JOG. Na początek należy ustawić małą prędkość np. 5% i stopniowo ją zwiększać do 100% kontrolując przy tym czy nie pojawiają się wibracje i jaki jest maksymalny błąd chwilowy położenia („Max Error” w grupie „Monitor”).

W większości wypadków, pod warunkiem dobrze nastrojonego serwowzmocniciaka, funkcja autostrojenia w urządzeniu CSMIO/IP-A dobiera bardzo dobre parametry i praktycznie nie ma potrzeby ręcznego dostrajania. Są jednak specyficzne przypadki maszyn, na których funkcja autostrojenia nie będzie chciała dobrze działać. Mogą to być np. przypadki, gdzie osie mają bardzo duże bezwładności, lub gdzie występuje duża asymetria obciążenia w zależności od kierunku ruchu. W takim przypadku należy dobrać parametry regulatora ręcznie.
12 Pierwsze testy

12.1 Sprawdzenie sygnałów wejściowych

Przed rozpoczęciem testów w ruchu należy sprawdzić najważniejsze sygnały wejściowe, takie jak:

- Czujniki bazujące – HOME
- Wyłączniki krańcowe – LIMIT
- Stop awaryjny – ESTOP (Emergency).

Po uruchomieniu programu Mach3 przechodzimy na zakładkę „Diagnostics”. W obszarze „Input signals current state” widoczne są kontrolki sygnałów wejściowych. Podczas testu żadna osława maszyny nie powinna znajdować się ani na wyłączniku krańcowym ani na czujniku bazującym. Należy ręcznie, kolejno załączać czujniki HOME i sprawdzać czy zapalają się odpowiednie kontrolki. Przy kontrolikach sygnałów wejściowych osie oznaczone są jako M1, M2, M3, M4, M5, M6 odpowiada to kolejno X, Y, Z, A, B, C. Po sprawdzeniu wyłączników HOME, należy sprawdzić działanie wyłączników krańcowych LIMIT. Ponownie należy ręcznie załączać wyłączniki LIMIT na każdej osi i sprawdzać na ekranie, czy zapalają się odpowiednio kontrolki. Jeśli kontrolki, lub kontrolka świeci się cały czas a po ręcznym wciśnięciu wyłącznika krańcowego gaśnie, oznacza to nieprawidłową polaryzację – należy zmienić konfigurację w oknie „Ports and pins” (patrz poprzednie podrozdziały).

Jeśli na wszystkich osiach czujniki HOME i LIMIT działają prawidłowo, pora raz jeszcze sprawdzić sygnał stopu awaryjnego, tutaj nazwany Emergency. Po wciśnięciu grzybka, kontrolka powinna mrugać na czerwono. Po zwolnieniu grzybka, powinna gasnąć.

Jeśli wszystko działa poprawnie, można wcisnąć RESET na ekranie i przejść do następnego podrozdziału.

Jeśli brak jest reakcji na jakiekolwiek sygnały, należy sprawdzić, czy program w ogóle komunikuje się ze sterownikiem CSMIO/IP-A. W oknie diagnostycznym wywoływany z menu „PlugIn Control‡ CSMIO_IP Plugin” można sprawdzić status połączenia. Jeśli kontrolka świeci się na czerwono, można spróbować zamknąć i ponownie uruchomić program Mach3. Jeśli problem nie ustąpi, należy cofnąć się i przeczytać rozdziały poświęcone instalacji i konfiguracji.
12.2 Sprawdzenie wyskalowania osi i kierunków ruchu

Pierwszą kontrolę ruchu najlepiej wykonywać z małą prędkością. Po wciśnięciu klawisza TAB na klawiaturze otwiera się panel posuwu ręcznego. W polu pod napisem „Slow Jog Rate” wpisujemy np. 10%. Oznacza to, że ruch będzie odbywał się z 10% prędkości maksymalnej zdefiniowanej w Motor Tuning.

Osiami XY można sterować przy pomocy strzałek na klawiaturze, osią Z przy pomocy klawiszy „Page Down” oraz „Page Up”. Można też użyć przycisków widocznych w oknie panelu posuwu ręcznego.

Należy sprawdzić każdą z osi, kontrolując czy:

- Kierunek ruchu się zmienia. Jeśli nie, oznacza to może nieprawidłowe podłączenie sygnału DIR do napędu.
- Kierunki nie są zamienione. Jeśli tak, należy w „Config à Homing/Limits” zamienić kierunek osi.

Gdy wszystkie osie mają poprawnie skonfigurowane kierunki ruchu, można określić kierunki(strony) bazowania.

Dla 3-osiowej maszyny XYZ najczęstszą konfiguracją jest bazowanie osi XY w kierunku ujemnym, a osi Z w kierunku dodatnim (u góry), czyli w „Config à Home/Limits” dla osi Z zaznaczone jest pole „Home Neg”.

Przed dalszymi testami warto jeszcze sprawdzić wyskalowanie osi. Najlepiej w tym celu posłużyć się czujnikiem zegarowym lub innym dokładnym instrumentem pomiarowym. W panelu posuwu ręcznego ustawić tryb pracy krokowej (kliknąć Jog Mode) oraz wielkość kroku 1mm. Prędkość „Slow Jog Rate” nie dotyczy ruchu w trybie pozycyjnym jakim jest ruch krokowy, dlatego prędkość ustawiamy na głównym ekranie w polu „Feedrate”. Do tego testu najlepiej wpisać niską wartość – np. 100mm/min. Teraz po wciśnięciu np. strzałki w prawo na klawiaturze, oś X przejeżdzie w prawo dokładnie o 1mm. Należy przejechać w ten sposób przynajmniej 10mm każdą osią, sprawdzając czujnikiem zegarowym odległość faktycznie pokonaną przez oś. Czujnik należy wyzerować dopiero po przejechaniu 1mm, gdy są skasowane już ewentualne luzy mechaniczne. Jeśli widoczna jest wyraźna rozbieżność pomiędzy zadaną pozycją, a faktyczną pozycją osi i błąd ten jest tym większy im większa odległość, oznacza to, że źle skonfigurowany został parametr „Steps Per” w oknie Motor Tuning. Należy cofnąć się do rozdziałów poświęconych konfiguracji i sprawdzić obliczenia.

Wpisując wartości w polach tekstowych na ekranie Mach’a zawsze zatwierdzaj wpisaną wartość klawiszem ENTER. W przeciwnym wypadku wartość nie zostanie wprowadzona.
12.3 Test bazowania (HOMING) oraz krańcówek programowych

12.3.1 Pierwsze bazowanie

Mając poprawnie wyskalowane osie i prawidłowe kierunki ruchu, pora na wykonanie pierwszego bazowania maszyny (jazda referencyjna, HOMING). Podczas normalnej pracy najwygodniej używać przycisku bazowania wszystkich osi („Ref All Home” na głównym ekranie). Podczas testów lepiej jednak będzie bazować poszczególne osie pojedynczo - z poziomu ekranu Diagnostic Mach’a.

Na ekranie Diagnostic programu Mach3 widoczna jest grupa przycisków służących do bazowania poszczególnych osi. Przed wywołaniem pierwszego bazowania należy być przygotowanym do awaryjnego zatrzymania maszyny grzybkiem stopu awaryjnego, lub przez naciśnięcie przycisku [Ref All Home] na ekranie Mach’a.

Poprzez kolejne klikanie przycisków Ref… sprawdzić bazowanie wszystkich używanych osi. Po poprawnym wykonaniu bazowania kontrolka obok przycisku powinna zmienić kolor na zielony. Jeśli przy wywołaniu bazowania zauważymy, że ruch odbywa się w złym kierunku, można poprawić konfigurację „Config à Homing/Limits”.

Jeśli osie bazują się poprawnie, można poeksperymentować ze zwiększeniem prędkości bazowania w konfiguracji „Config à Homing/Limits”.

12.3.2 Krańcówki programowe SoftLimit.

Gdy osie poprawnie się bazują, można skonfigurować, włączyć i sprawdzić działanie krańcówek programowych. W tym celu klikając „Jog Mode” na panelu posuwu ręcznego ustawić tryb ciągły „Cont.”. Prędkość „Slow Jog Rate” na np. 40%. Warto też włączyć podgląd współrzędnych maszynowych (absolutnych) klikając przycisk [Ref] na głównym ekranie Mach’a. Następnie w trybie ręcznym dojechać np. osią X 5mm przed krańcówkę sprzętową i zapisać na kartce współrzędną X z ekranu. Czynność wykonać dla wszystkich osi.

Następnie otworzyć okno „Config à Homing/Limits” i wpisać odpowiednie wartości do SoftMax i SoftMin. Dla osi X i Y z reguły SoftMin=0. Należy pamiętać, że os Z najczęściej pracuje w kierunku ujemnym, czyli dla niej SoftMax będzie równe zero, a dolne ograniczenie wpisujemy w SoftMin.

Po pomyślnie zakończonym teście można wyłączyć współrzędne absolutne ponownie klikając na przycisk [Stop].

Po zmianie niektórych parametrów konfiguracyjnych sterownik może przejść samoczynnie w tryb stopu awaryjnego, jest to zupełnie normalne. W takim wypadku należy kliknąć przycisk [Start] oraz wykonać bazowanie wszystkich osi przyciskiem „Ref All Home” na głównym ekranie Mach’a.
12.4 Test wrzeciona i chłodzenia.

Na tym etapie praktycznie wszystkie najważniejsze elementy systemu są sprawdzone i obrabiarka jest prawie gotowa do pracy. Pozostała jeszcze jedna istotna kwestia, mianowicie test wrzeciona. Obróbka z nieobracającym się wrzecionem z reguły nie jest dobrym pomysłem.

Program Mach powinien być uruchomiony i być w trybie aktywności. Najszybszym sposobem na przetestowanie pracy wrzeciona jest tryb MDI. Klikamy więc w górnym pasku przycisków na MDI. Tryb ten pozwala na ręczne tekstowe wprowadzanie komend G-Kodu:

- Wpisz komendę M3 (obroty prawe) i zatwierdź <enter>. Wrzeciono powinno zacząć obracać się w prawo z zadaną prędkością.
- Wpisz komendę M5 (zatrzymanie) i zatwierdź <enter>. Wrzeciono powinno się zatrzymać.
- Wpisz komendę M4 (obroty lewe) i zatwierdź <enter>. Wrzeciono powinno obracać się lewo z zadaną prędkością.
- Zatrzymaj pracę komendą M5.
- Załącz chłodzenie M7, wyłącz M30.
- Załącz chłodzenie M8, wyłącz M30.

Dobrze jest sprawdzić różne wartości obrotów i zmianę z obrotów maksymalnych na bardzo niskie. Jeśli nie korzystamy z rezystora hamowania przy falowniku, może się okazać, że przy hamowaniu z wysokich obrotów falownik będzie zgłaszał błąd. Trzeba wtedy zaopatrzeć się w rezystor hamowania lub wydłużyć czas hamowania.

W przypadku problemów sprawdź jeszcze raz ustawienia konfiguracyjne oraz ewentualnie również konfigurację falownika. Praktycznie zawsze falowniki posiadają różne tryby sterowania, brak odpowiedniej konfiguracji spowoduje, że falownik nie będzie reagował na sygnały zewnętrzne.

Przed załączeniem wrzeciona sprawdź, czy nie ma w nim niedokręconej tulejki zaciskowej. Podczas hamowania z wysokich obrotów nakrętka mocująca może się odkręcić i wirująca tulejka może spowodować obrażenia ciała.
13 Przykładowa obróbka krok po kroku.

Dla przybliżenia zasady korzystania z obrabiarki wyposażonej w system sterowania CSMIO/IP-A poniżej został przedstawiony prosty przykład obróbki.

Przykład obejmuje planowanie powierzchni oraz wyfrezowanie logo w kostce o wymiarach 30.6x30.6x48mm z twardego stopu aluminium.

Projekt i generowanie pliku G-Code będzie wykonane przy pomocy popularnego programu ArtCam®. Plik logo jest gotowy w formacie AI, który bardzo dobrze się sprawdza w przenoszeniu danych wektorowych pomiędzy różnymi programami.

Założenia:
- Powierzchnia planowana będzie na głębokość 0,2mm frezem walcowym o średnicy 8mm.
- Do ustawienia bazy wykorzystany zostanie wałek z węglika o średnicy 6mm zaszlifowany na połowę średnicy.
- Logo frezowane będzie frezem grawerskim 20 stopni/0.6mm - na głębokość 0,3mm.

13.1 Przygotowanie projektu i plików G-Code.

Zakładamy nowy projekt w programie ArtCam, podając wymiary naszej kostki. Rozdzielczość w tym przykładzie nie jest zbyt istotna, można ją ustawić na niskim poziomie.

Wybieramy w ArtCam’ie polecenie Import Vector Data, a w oknie, które się ukaże opcję, która spowoduje ustawienie naszego logo na środku zdefiniowanego wcześniej pola.

Następnie dorysowujemy obiekt, którego użyjemy do planowania powierzchni. Dobrze, aby obiekt był większy od naszej kostki, by frez walcowy wychodził podczas wierszowania całą średnicą poza materiał. Najpierw narysujemy prostokąt o dokładnych wymiarach naszej kostki, wybierając ikonę z zakładki Vector. W polach Width i Height wpisujemy wymiar 48 i 30.6. Następnie klikamy „Create” i „Close”.

Teraz trzeba ustawić pozycję obiektu. Klikamy na niego prawym klawiszem myszy i wybieramy „Transform Vectors”.

Zaznaczamy lewy dolny róg obiektu i wpisujemy pozycję 0,0. Następnie klikamy „Apply” i „Close”.
Taki nowopowstały obiekt pokrywa się dokładnie pozycją i rozmiarem z polem roboczym. Teraz należy dodać wspomniane dodatkowe powiększenie, by frez wychodził całą średnią poza obrabiany materiał – uzyskamy dzięki temu lepszą powierzchnię.

Klikamy na nasz obiekt i wybieramy pozycję menu „Vectors/Offset”. Frez ma średnią 8mm, dany jeszcze mały zapas – wpisując jako Offset Distance wartość 8.5mm. Offset Direction podajemy jako Outwards – czyli na zewnątrz. Offset corners, narożniki – tutaj bez znaczenia. Zaznaczamy jeszcze Delete original vectors, gdyż nie potrzebujemy zachowywać oryginalnego obiektu.

Na tym etapie nasz projekt wygląda tak:

Można teraz przystąpić do generowania trajektorii dla narzędzi.

W pierwszej kolejności ścieżka narzędzia dla planowania powierzchni. Zaznaczamy obiekt, który przed chwilą stworzyliśmy i z zakładki Toolpath wybieramy ikonę Area Clearance.

W polu Finish Depth wpisujemy głębokość obróbki, czyli w naszym przypadku 0,2mm. W polu tolerancji wpisujemy 0,01mm. Jak wynika z praktyki, nie warto przesadzać z poziomem tolerancji. Często podaje się np. 0,001mm, co może ładnie wyglądać na ekranie komputera, niestety ma mało wspólnego z rzeczywistością. W rzeczywistości, niedokładności np. zaciskania narzędzia (także we wrzecionach za 8000euro!), czy niedokładności samego narzędzia, mechaniki obrabiarki itd., powodują, że sporym wyzwaniem jest uzyskanie rzeczywistej dokładności obróbki rzędu 0,01mm. Oczywiście jeśli posiada się mechanicę wysokiej klasy, konstrukcję granitową oraz całość stabilizowaną termicznie i do tego realizuje się precyzyjne zlecenia – można tolerancję ustawić na dokładniejszym poziomie.

Parametr Safe Z można ustawić na 5mm, Home Position na [0,0,10]. Zaznaczyć można też „Add Ramping Moves” na domyślnych parametrach, spowoduje to płynniejsze wejście w materiał.
Należy także poinformować program jakiego używamy narzędzia. Poniżej Tool List klikamy przycisk Add. W oknie bazy narzędzi klikamy Add Tool, by dodać nowe narzędzie. Wpisujemy parametry jak na rysunku obok. Niektóre parametry takie jak opis, czy średnica są oczywiste. Stepdown to maksymalna głębokość na jaką będzie zagłębiać się narzędzie. Stepover to gęstość wierszowania. Im większa, tym z reguły lepsza powierzchnia, tu również nie warto przysadzać, ponieważ można tylko niepotrzebnie wydłużyć obróbkę. Feed Rate to posuw w płaszczyźnie XY, natomiast Plunge Rate to prędkość, z jaką narzędzie będzie zagłębiało się w materiał. Tool Type to oczywiście typ kształtu narzędzia, pomocny jest tutaj rysunek, który się wyświetla po wybraniu danego typu.

Na koniec zatwierdzamy „OK”, wybieramy nasze narzędzie z listy i klikamy Select.

W polu Tool List w panelu konfiguracyjnym Area Clearance powinno pojawić się nasze narzędzie, teraz wystarczy już tylko kliknąć Calculate: Now w dolnej części panelu. Na podglądzie obszaru roboczego powinna się pokazać obliczona trajektoria narzędzia. Możemy przełączyć na widok 3D by lepiej się przyjrzyć. Powinno to wyglądać mniej więcej tak:

Teraz nagrywamy trajektorię przechodząc do zakładki Toolpaths i klikając ikonę .

W oknie nagrywania trzeba wybrać tzw. postprocessor, czyli zdefiniować format danych wyjściowych odpowiedni dla naszego systemu sterowania. W ArtCam’ie polecamy „G-Code Arcs(mm)(*.tap)”. Jest to podstawowy format G-Kodu odpowiedni dla programu Mach3. Po wybraniu formatu klikamy na przycisk „Save” i zapisujemy naszą trajektorię pod nazwą np. „planowanie.tap”.

Strona 95
Następnie należy wygenerować trajektorię narzędzia dla logo. Przechodzimy z powrotem na podgląd 2D, a w panelu zakładki Toolpaths obok nazwy poprzednio wygenerowanej ścieżki odznaczamy Show In 2D|3D. Poprzednia trajektoria zniknie z podglądu i nie będzie zakładała nam widoku.

Teraz zaznaczamy nasze logo i klikamy ponownie ikonę Area Clearance. Parametry podajemy prawie tak, jak poprzednio, jedynie głębokość tym razem podajemy 0.3mm oraz odznaczamy „Add Ramping Moves” - nie będzie w tym wypadku potrzebne, musimy także zdefiniować inne narzędzie. Postępujemy w tym celu tak jak poprzednim razem, klikamy Add pod listą narzędzi oraz Add Tool w oknie bazy narzędzi. Parametry w tym wypadku wyglądają jak poniżej:

Należy zwrócić uwagę, że w programie ArtCam rozmiar uchwytu podaje się jako średnicę, natomiast wymiar końcówki narzędzia (F) jako promień. Prędkości, które tutaj podano są dość niskie, jednak chodzi tylko o przykład, a nie o „jazdę wyczynową”, która ma sens dopiero wówczas, gdy wykonujemy zlecenia produkcyjne większej ilości sztuk. Przy tak prostych pojedynczych pracach więcej czasu zajmuje przygotowanie projektu, zamocowanie materiału i ustawienie maszyny, niż sama obróbka.

Gdy już podamy nasze narzędzie, można kliknąć Calculate: Now i nagrać ścieżkę klikając na ikonę . Postprocessor powinien pozostać taki jak wybraliśmy poprzednio. Nazwę dajemy np. „graw_logo.tap”. Podgląd w 3D powinien wyglądać mniej więcej tak:
13.2 Przygotowanie obrabiarki i Mach’a.

Gdy pliki są gotowe, trzeba jedynie zamocować i zbazować materiał. Najpierw jednak na komputerze sterującym uruchamiamy program Mach3 i wykonujemy jazdę referencyjną wszystkich osi poprzez naciśnięcie przycisku „Ref All Home” na głównym ekranie.

Zamocuj materiał pewnie, by nie istniało ryzyko przesunięcia lub wyrwania podczas obróbki.

Tak jak wspomniano na początku – do ustawienia bazy materiału zostanie użyty wałek z węglika spiekanego, precyzyjnie zaszlifowanego na połowę średnicy. Jeśli używamy pomiaru długości narzędzia wpiszmy nr narzędzia „1” w polu „Tool” w Machu i wywołajmy pomiar naciskając przycisk „Auto Tool Zero”.

W panelu posuwu ręcznego ustaw tryb jazdy ciągłej i prędkość 25%. Od razu można też wpisać w polu Feedrate posuw dla pracy krokowej, której za chwilę będziemy używać – 1000 mm/min.

Teraz korzystając z klawiszy strzałek lub z klawiszy na pulpicie maszyny, wykonujemy dojazd do lewej krawędzi materiału, oś Z znajduje się nieco poniżej poziomu materiału.

Następnie zmieniamy tryb posuwu na krokowy i ustawiamy krok 0.1mm. Przy pomocy pracy z krokiem 0.1mm dojeżdżamy bardzo blisko materiału i przełączamy krok na 0.025mm, wpisując tę wartość w pole tekstowe i zatwierdzając <enter>. Teraz dojeżdżamy tak, by połówka zaszlifowanego wałka przylegała do powierzchni bocznej materiału. Gdy będziemy próbować palcem obracać wrzeciono w jedną i drugą stronę – będziemy mogli je poruszać tylko w niewielkim zakresie. Na więcej nie pozwolą krawędzie wałka. Dosuwamy po kroku o kolejne 0.025mm aż w ogóle nie będzie można ruszać wrzecionem – oznacza to, że płaszczyzny materiału i zaszlifowania wałka przylgnęły do siebie.
Możemy w tym miejscu ustawić bazę materiału w osi X, klikając przycisk „Zero X” na ekranie Mach'a. Współrzędna X na ekranie zostanie wyzerowana.

Przestawiamy tryb posuwu na ciągły, prędkość „Slow Jog Rate” wpisujemy na np. 2% ponieważ poruszamy się bardzo blisko materiału i mocowania i w analogiczny sposób ustawiamy bazę Y na dolnej krawędzi zamocowanej kostki. Ten sposób bazowania może wydawać się nieco uciążliwy, ale przy odrobinie wprawy można tego dokonać bardzo szybko, poza tym jest całkiem dokładny.

Gdy jest ustawiona pozycja na dolnej krawędzi materiału klikamy „Zero Y”, by wyzerować w tym miejscu współrzędną Y.

Jeśli nie korzystamy z automatycznego pomiaru długości narzędzia ustawianie bazy Z w tym momencie nie ma sensu. Trzeba to zrobić dopiero, gdy założymy właściwe narzędzie. Zakładam jednak, że taki czujnik jest zainstalowany w obrabiarce.

Bazu w osi Z ustawiamy bardzo podobnie jak XY, podnosząc oś nieco do góry ponad poziom materiału, po czym w trybie krokowym opuszczając do momentu gdy dolna powierzchnia wałka dotknie materiału. No i oczywiście klikamy „Zero Z” zerując w tym miejscu współrzędną Z.

Baza materiału jest już ustawiona, można założyć właściwy frez – do planowania powierzchni, zmierzyć go i załadować plik trajektorii.

Po zamocowaniu narzędzia mierzymy je klikając przycisk „Auto Tool Zero”.

Automatyczny pomiar długości narzędzia nie należy do standardowych funkcji programu Mach3. Opis uruchomienia i konfiguracji tej funkcji znajduje się w rozdziale 14.1 – „Automatyczny pomiar długości narzędzia”.
13.3 Zaczynamy obróbkę

Wybieramy w Mach’u pozycję menu „File/Load G-Code”, lub klikamy przycisk „Load G-Code” na głównym ekranie. Wybieramy utworzony wcześniej plik „planowanie.tap”. Po załadowaniu pliku możemy wstępnie ustawić maszynę nad materiałem wpisując w ekranie MDI:

- G0G53 Z0 <enter>
- G0 X0 Y0 <enter>

Pierwsza komenda spowoduje podniesienie osi Z maksymalnie do góry, druga komenda ustawi osie XY obrabiarki w zdefiniowanym wcześniej punkcie zerowym materiału.

Ponownie przechodzimy na główny ekran i klikamy przycisk „Cycle Start” – rozpoczęcie obróbki.

Poniżej zdjęcie wykonane w trakcie obróbki:

Można wymienić teraz narzędzie na frez grawerski i załadować drugą wygenerowaną wcześniej trajektorię.

Przed rozpoczęciem obróbki jest tylko jeden, ale za to istotny szczegół. Planując powierzchnię obniżyliśmy jej poziom, grawerowanie logo wyszło na głębokość 0.1mm, a nie jak założyliśmy 0.3mm. Można temu łatwo zaradzić obniżając poziom punktu zerowego o 0.2mm (czyli głębokość planowania). Klikamy na pole tekstowe, w którym wyświetlana jest aktualna pozycja Z i z klawiatury wpisujemy „+0.2<enter>”.

![Przykład wykonywania obróbki](image-url)
Po tej operacji możemy rozpocząć obróbkę z drugiego pliku nie zapominając o wykonaniu pomiaru po wymianie narzędzia (przycisk „Auto Tool Zero”).

Gdy plik jest załadowany, a narzędzie zmierzone możemy ponownie ustawić osie maszyny nad materiałem przy pomocy MDI jak poprzednio.

Pozostaje tylko wcisnąć „Cycle Start” by rozpocząć obróbkę.

Poniżej znajdują się zdjęcia detalu w trakcie obróbki, po zakończeniu obróbki oraz po demontażu z maszyny i delikatnym przeszlifowaniu papierem ściernym śladów frezu od planowania powierzchni.
14 Kilka uwag praktycznych o programie Mach3 i CSMIO/IP-A

Poniżej znajduje się kilka porad, które mogą pomóc osobom niezaznajomionym z programem Mach3 podczas pracy.

1. Klawiatura komputerowa.
 a. Nie używaj klawiatury bezprzewodowej, zdarza się, że taka klawiatura odnotuje naciśnięcie klawisza, nie odnotuje jednak jego puszczenia. Podczas sterowania maszyną może to być bardzo niebezpieczne.
 b. Również klawiatury na port USB potrafią zachowywać się w nieprzewidywalny sposób. Port USB jest wysoce wrażliwy na zakłócenia, dlatego szczególnie w maszynach z serwonapędami i wrzecionami większych mocy – stanowczo odradzam klawiatury USB.
 c. Najpewniejszym rozwiązaniem jest klawiatura na PS2 lub podłączenie przemysłowych przycisków do wejść cyfrowych CSMIO/IP-A i odpowiednie zdefiniowanie ich w Mach’u.

2. Pamiętaj, że spisując wartości w jakiekolwiek pola tekstowe na ekranie Mach’a, zawsze trzeba zatwierdzić wciskając klawisz ENTER.

3. Jeśli wykonujesz programy CNC z dużymi prędkościami i ruch momentami traci płynność, sprawdź parametr „LookAhead” w „Config/General config”. Odpowiada on za ilość analizowanych naprzód odcinków trajektorii. Ustaw wartość tego parametru na 999.

4. Jeśli wykonujesz programy CNC z dużymi prędkościami i zauważasz zniekształcenia polegające na zaokrągleniu naroży, włącz opcję i poeksperymentuj z parametrem „CV Dist. Tolerance” w „Config General Config”. Na początek możesz ustawić tą wartość na 0,5 co będzie odpowiednio tolerancji naroża 0,5mm.

5. Program Mach3 jako separatora dziesiętnego (do oddzielenia części ułamkowej) używa znaku kropki „.”. Należy o tym pamiętać wpisując wartości ułamkowe.

7. Jeśli maszyna wjechała na krańcówkę sprzętową LIMIT, można z niej zjechać poprzez załączenie na ekranie Settings klawisza „OverRide Limits”. Wygodne jest też załączenie „Auto LimitOverRide” – spowoduje to, że podczas najazdu na krańcówkę maszyna zatrzyma się, ale będzie można bez dodatkowych operacji kliknąć RESET i zjechać z krańcówki. Dodatkowo włączona funkcja „Smart Limits” zabezpieczy przed ruchem w złą stronę, który może być wywołany np. omyłkowym przycięciem złego przycisku.

8. Sterowanie ręczne (JOG).
 a. Nie zapominaj o tym, że klawiszem TAB wywołuje się dodatkowy panel boczny, w którym można ustawić, prędkość, tryb ciągły, lub krokowy – co bardzo ułatwia sterowanie osiami i precyzyjne ustawienie bazy materiału.
 b. Naciskając klawisz posuwu (np. strzałkę w prawo) jednocześnie z klawiszem SHIFT ruch zawsze odbywa się w trybie ciągłym z prędkością 100% niezależnie od aktualnych ustawień.
 c. Naciskając klawisz posuwu jednocześnie z klawiszem CTRL ruch zawsze odbywa się w trybie krokowym z prędkością ustawioną w polu FEEDRATE.
9. Mach3 zawsze uruchamia się z wybranym narzędziem „0”, jeśli korzystamy ze zmieniarki narzędzi i w uchwycie pozostało przy wyłączaniu jakieś narzędzie, to po ponownym uruchomieniu Mach’a trzeba podać jego numer (grupa Tool Information na głównym ekranie, pole „Tool”).
a. Jeśli nie korzystamy ze zmieniarki, ale posiadamy czujnik automatycznego pomiaru długości narzędzia, po uruchomieniu programu Mach3, w pole „Tool” wpisujemy zawsze „1” <enter>. Analogicznie podczas generowania pliku g-code w programie CAM również zawsze ustawiamy narzędzie 1.

10. Przycisk STOP na ekranie Mach3 zatrzymuje maszynę bardzo gwałtownie. Przy silnikach krokowych może to spowodować wypadnięcie silnika z pozycji, a przy serwonapędach sterowniki silników mogą zgłosić błąd przeciążenia lub przekroczenia dozwolonego błędu i trzeba będzie ponownie bazować maszynę. Zalecanym sposobem zatrzymania pracy jest wciśnięcie najpierw paui („Feed Hold”), a dopiero po zatrzymaniu – klawisza STOP.

11. Ponowne uruchomienie programu CNC od zadanego miejsca realizuje się poprzez ustawienie w oknie G-Kodu żądanej pozycji (linii), następnie należy wcisnąć przycisk „Run From Here” i dopiero wtedy „Cycle Start”.

12. Warto znać podstawowe komendy G-Kodu, gdyż wtedy w wielu sytuacjach bardzo przydatnym narzędziem staje się ekran MDI Mach’a, gdzie ręcznie można wpisywać komendy, które natychmiast są wykonywane.

13. Jeśli posiadasz magazyn narzędzi i/lub czujnik automatycznego pomiaru długości narzędzia, pamiętaj, że wszelkie manipulacje/zmiany położenia czy demontaż wyłączników bazujących HOME może spowodować przestawienie pozycji zera absolutnego maszyny i konieczna jest wtedy ponowna kalibracja pozycji magazynu i czujnika automatycznego pomiaru długości narzędzia.

14. Jeśli ustawiasz punkt zerowy (bazę materiału) i korzystasz z automatycznego pomiaru narzędzia – zawsze najpierw wykonaj pomiar narzędzia, a dopiero potem ustawiaj punkt zerowy. Ustawienie punktu zerowego niezmierzonym narzędziem spowoduje przesunięcie poziomu obróbki, gdy zamocujemy kolejne narzędzie i wywołamy pomiar.

15. Komputer, który jest używany do sterowania maszyną powinien być traktowany jako integralna część systemu sterowania i nie powinien być używany do żadnych innych zadań. Oznacza to, że zainstalowany na nim powinien być tylko system operacyjny, program Mach3 i nic poza tym (ewentualnie edytor ekranów i manager plików jak np. TotalCommander®). Do wszelkich innych zadań takich jak projektowanie itp. powinien być używany osobny komputer.

16. Na komputerze sterującym wyłącz efekty wizualne pulpitu, wygaszacz ekranu, a profil zasilania ustaw jako „zawsze włączony”.
15 Makra VisualBasic®

15.1Automatyczny pomiar długości narzędzia

Pomiar wykonywany jest w następujących etapach:

- Podniesienie osi Z na maksymalną wysokość (zero absolutne)
- Jazda w trybie szybkim (G0) na pozycję XY czujnika.
- Szybki zjazd (G0) osią Z do poziomu tzw. bezpiecznego Z.
- Jazda w dół w trybie pomiaru (G31) z prędkością „1”, do momentu otrzymania sygnału z czujnika.
- Podniesienie osi Z o niewielką wartość (przygotowanie do pomiaru dokładniejszego).
- Jazda w dół w trybie pomiaru (G31) z prędkością „2”, do momentu otrzymania sygnału z czujnika.
- Po zakończonym pomiarze – maksymalne podniesienie osi Z.

15.1.1 Konfiguracja

Przed przystąpieniem do konfiguracji skryptu, należy wykonać następujące czynności:

1. Sprawdzić działanie czujnika i konfigurację sygnałów wejściowych – przejść na zakładkę Diagnostics i wciskając ręką czujnik obserwować stan kontrolki na ekranie. Kontrolka powinna zapalać się w momencie naciśnięcia czujnika, a po puszczeniu gasnąć. W razie problemów przejdź do rozdziału 10.4 poświęconego sygnałom wejściowym. Sygnał dla czujnika w oknie konfiguracji sygnałów nosi nazwę „Probe”.
2. Wykonaj jazdę referencyjną wszystkich osi.
4. Zamocuj narzędzie w uchwycie wrzeciona (obojętnie jakie, do pierwszych testów najlepiej jak najtańsze).
5. Najedź w trybie posuwu ręcznego nad środek powierzchni pomiarowej czujnika. Zanotuj współrzędne XY.
6. W trybie pracy krokowej obnijz powolno oś Z do momentu pojawienia się sygnału z czujnika i zanotuj współrzędną Z.
7. Odjedź do góry ośią Z do poziomu, który uznasz za bezpieczny. Tutaj małe wyjaśnienie – jak pisano wyżej, podczas pomiaru najpierw do pewnego poziomu następuje szybki zjazd komendą G0. Trzeba ocenić do jakiego poziomu oś Z może zjeździć szybko. Uzależnione jest to od maksymalnej długości narzędzia jakie będą mierzone. Można też podać „0” jako bezpieczny Z i wtedy pomiar zacznie się już od najwyższego położenia.
8. Przejedź osiami XY tak by ustawić się gdzieś nad powierzchnią stołu roboczego.
9. Powoli, korzystając z pracy krokowej zjedź narzędziem w dół do powierzchni stołu roboczego i zanotuj współrzędną Z.
10. Wyłącz tryb współrzędnych absolutnych klikając ikonę .

Gdy posiadamy zanotowane wszystkie potrzebne dane, otwieramy pobrany plik toollength.m1s w dowolnym edytorze tekstowym (np. w systemowym notatniku). Następnie zaznaczamy całość myszką, lub wciskając CTRL+A i kopiujemy do schowka – CTRL+C.

W standardowym interfejsie graficznym Mach’a, na głównym ekranie znajduje się przycisk „Auto Tool Zero”. Domyślnie przycisk ten zdefiniowany jest jako wywołujący makro, nie trzeba więc dodawać nowego przycisku w graficznym edytorze.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_SAFE</td>
<td>To jest parametr określający do jakiej wysokości oś Z może zjeżdżać szybko (G0). Jeśli mamy wątpliwości jak długo narzędzie będą mierzone, bezpieczniej wpisać tutaj „0”.</td>
</tr>
<tr>
<td>SENS_X/SENS_Y</td>
<td>Pozycja X i Y czujnika w obszarze roboczym obrabiarki.</td>
</tr>
<tr>
<td>MAX_DTRAVEL</td>
<td>Maksymalna odległość oś zjedzie w dół w trybie pomiarowym. Jeśli w trybie pomiaru oś Z przewidziale tą odległość, a sygnał z czujnika się nie pojawi – pomiar zakończy się niepowodzeniem. Przy pomocy tego parametru można zabezpieczyć się przed sytuacją gdyby wywołany był pomiar bez zaciśniętego narzędzia.</td>
</tr>
<tr>
<td>SPD_FAST</td>
<td>Prędkość pierwszego pomiaru w mm/min.</td>
</tr>
<tr>
<td>SPD_FINE</td>
<td>Prędkość drugiego, dokładnego pomiaru w mm/min.</td>
</tr>
<tr>
<td>Z_LIFT</td>
<td>Określa o ile ma podnieść się oś Z przed drugim pomiarem. Wartość powinna być na tyle duża, żeby przy podniesieniu, czujnik z powrotem zmienił stan na nieaktywny.</td>
</tr>
<tr>
<td>Z_PARK</td>
<td>Poziom Z, na który jest ustawiana oś przed pomiarem i po zakończonym pomiarze. Z_reguły „0”.</td>
</tr>
</tbody>
</table>

Teraz należy zapisać makro wybierając z menu „File à Save” i zamknąć okno. Najlepiej po tej operacji również zamknąć i ponownie uruchomić program Mach3, by mieć pewność, że ustawienia zostały zapisane.

15.2 Makro automatycznej wymiany narzędzi

Na naszej stronie internetowej http://www.cs-lab.eu dostępne jest również przykładowe makro obsługujące automatyczną wymianę narzędzi (m6Start.m1s). Niestety z uwagi na wyższy stopień skomplikowania oraz fakt, że często wrzeciona różnych producentów posiadają odmienną logikę sygnałów często wymagane jest ścisłe dostosowanie pod określoną obrabiarkę.

Firma CS-Lab s.c. za dodatkową opłatą świadczy usługi w zakresie uruchomienia, konfiguracji oraz dostosowania systemu sterowania pod konkretne potrzeby.

Oferujemy również rozwiązania kompleksowe – czyli przygotowanie całej skrzynki sterowniczej, uruchomienie, konfigurację, przygotowanie makr pod specjalistyczne zadania itp.

Jeśli są Państwo zainteresowani szczegółową ofertą – prosimy o informację na adres email: biuro@cs-lab.eu lub nr telefonu 52 374 74 34 w.201.
Dodatek A – Przykład konfiguracji osi zależnej

Przy większych maszynach często zachodzi konieczność zastosowania tzw. osi zależnej. Polega to na tym, że jedna oś fizyczna maszyny napędzana jest dwoma silnikami.

W urządzeniu CSMIO/IP-A została zaimplementowana funkcja osi zależnych z dodatkową możliwością regulacji geometrii maszyny. Regulacja geometrii jest niezwykle przydatna jeśli chcemy precyzyjnie ustawić prostopadłość osi.

Aby zrozumieć zasadę konfiguracji osi zależnej posłużymy się często spotykanym przypadkiem:

- Ploter 3 osiowy XYZ z jeżdżącą bramą.
- Przeniesienie napędu – listwy zębate.
- Oś X (brama) sterowana dwoma silnikami po obu stronach z przekładniami.
- Używane pojęcia: oś master (główna) oraz slave (zależna).

Zdefiniowanie używanych osi w programie Mach3

W menu „Config > Ports and Pins” załączamy osie X, Y i Z. Osią zależną może być oś A, B lub C. **Nie załączamy jej jednak tutaj.** Sterownik CSMIO/IP-A obsługuje oś zależną autonomicznie i załączenie jej jako normalnej osi może powodować konflikty.

Wyskalowanie i konfiguracja osi

Zakładamy, że maszyna jest poprawnie skonfigurowana tak jak opisano to w rozdziale 10. W „Config > Motor tuning” konfigurujemy tylko oś Y, czyli master, oś slave automatycznie zostanie skonfigurowana. Istotne jest by master oraz slave miały identyczną ilość kroków na milimetr, nie można więc stosować silników z różnymi enkoderami lub różnymi przekładniami.

Załączenie i wybór osi używanej jako slave

Funkcję osi zależnej konfiguruje się poprzez okno konfiguracyjne plugin’a – menu „Config > Config PlugIns” oraz kliknięcie „config” obok pozycji CSMIO-IP.

W naszym przykładzie osią z dwoma napędami jest oś X, natomiast przypisaną do niej osią zależną - oś B (oś A zostanie wolna, gdybyśmy chcieli w przyszłości korzystać z osi obrotowej).

W grupie „Slave Axis Configuration” wybieramy oś B jako „Slave”, tryb ustawiamy na razie na „No correction”, a „Geometry Correction” na 0.
Wyłączniki krańcowe LIMIT oraz bazujące HOMING

Zarówno po stronie slave’a jak i master’a powinny być osobne wyłączniki krańcowe LIMIT jak i HOME. Sygnały powinny być poprawnie podane w konfiguracji Mach’a („Config¢ Ports and Pins”).

Przed przystąpieniem do dalszych etapów konieczne należy sprawdzić, czy sygnały są poprawnie skonfigurowane (zakładka DIAGNOSTICS). Szczególną uwagę zwrócić na to czy nie są zamienione wyłączniki HOMING. Wciskając ręką wyłącznik HOME po stronie silnika „X” powinna zapalać się kontrolka M1HOME, wciskając HOME po stronie silnika „B” powinna zapalać się kontrolka M5HOME.

Ustawienie kierunków osi

Jedną z najistotniejszych rzeczy jest prawidłowe ustawienie kierunków ruchu dla osi master i slave. W naszym przykładzie napęd przenoszony jest listwami zębatymi. W takim przypadku najczęściej istnieje konieczność zamiany kierunku na osi slave. Można tego dokonać w konfiguracji „Config¢ Homing/Limits” ustawiając pole „Reversed” przy osi „B”. Kierunek można zamienić też w serwonapędzie.

Test posuwu ręcznego

Gdy powyższe czynności są już wykonane można pokusić się o test pracy osi na posuwie ręcznym. Mała uwaga: najlepiej na początek ustawić bardzo małą prędkość – nawet 0.5%. Należy przede wszystkim sprawdzić, czy silniki po obu stronach pracują i, czy przesuw odbywa się w dobrych kierunkach.

Automatyczny odczyt różnicy pozycji wyłączników HOME

Zanim włączymy tryb osi zależnej z korekcją geometrii należy wiedzieć jaka jest różnica pozycji wyłączników HOME po stronie master(„X”) i slave(„B”). Bazowanie z korekcją geometrii odbywa się w taki sposób, że oś master zawsze kończy bazowanie w momencie zjazdu ze swojego wyłącznika HOME, natomiast oś slave jedzie do: [pozycja zjazdu ze swojego czujnika HOME + korekcja]. Jeśli początkowo korekcję podamy równą zero, a pozycja wyłączników HOME po obu stronach różni się np. o 10mm, to podczas bazowania występowałoby koszenie i naprężanie konstrukcji Bramy.

Dla uniknięcia takiej sytuacji stworzony został dodatkowy tryb – pomiaru różnicy pozycji wyłączników HOME.

W oknie konfiguracyjnym plugin’a włączamy dla osi „X” w grupie „Slave Axis Configuration” tryb „Read Difference”, a następnie wywołujemy bazowanie.

Po zakończonym bazowaniu ponownie otwieramy okno konfiguracyjne plugin’a – w polu „Geometry Correction” powinna być wartość odczytana przy pomiarze.
Załączenie trybu korekcji geometrii

Po poprawnym pomiarze różnicy pozycji wyłączników HOME można załączyć w oknie konfiguracyjnym tryb „Sl. Correction” dla osi „X”. Od tej pory możemy regulować prostopadłość bramy poprzez modyfikowanie wartości „Geometry Correction”. Do pomiaru prostopadłości polecamy system Renishaw® Ballbar.

Firma CS-Lab s.c. dołożyła wszelkich starań by zapewnić niezawodność działania sterownika CSMIO/IP-A. Firma nie ponosi jednakże żadnej odpowiedzialności za wszelkie uszkodzenia mechaniki wynikające z błędnej konfiguracji, jak i z ewentualnych uszkodzeń, czy błędów programowych sterownika CSMIO/IP-A.
Dodatek B – Aktualizacja oprogramowania CSMIO/IP-A

Jak sprawdzić posiadaną wersję oprogramowania

Wersję oprogramowania sterownika można sprawdzić w oknie diagnostycznym wywoływanym z menu „PlugIn Control – CSMIO_IP plugin”.

Wersja podawana jest na dolnym pasku okna.

Aplikacja aktualizująca (uploader)

Na końcu instalacji pozostawiamy zaznaczoną opcję „Launch CSMIO/IP-A Controller Firmware” i klikamy „Finish”. Automatycznie zostanie uruchomiona aplikacja, za pomocą której uaktualnimy oprogramowanie w urządzeniu CSMIO/IP. Poniżej widać okno tej aplikacji.

Jeśli aplikacja aktualizacji oprogramowania uruchomiona została poprzez instalator, odpowiedni plik z oprogramowaniem został już załadowany i przycisk „Open App. File” jest nieaktywny. Jeśli w sieci jest tylko jeden sterownik CSMIO/IP aplikacja spyta się czy automatycznie rozpocząć aktualizację. Jeśli w sieci wykrytych zostanie więcej sterowników trzeba jedynie wybrać z listy adres IP sterownika, który chcemy zaktualizować, a następnie kliknąć przycisk „Flash Programm”.

Jeśli aplikacja aktualizacji oprogramowania uruchomiona została poprzez instalator, odpowiedni plik z oprogramowaniem został już załadowany i przycisk „Open App. File” jest nieaktywny. Jeśli w sieci jest tylko jeden sterownik CSMIO/IP aplikacja spyta się czy automatycznie rozpocząć aktualizację. Jeśli w sieci wykrytych zostanie więcej sterowników trzeba jedynie wybrać z listy adres IP sterownika, który chcemy zaktualizować, a następnie kliknąć przycisk „Flash Programm”.
Sterownik CSMIO/IP-A jest zabezpieczony przed sytuacją, gdy programowanie nie powiedzie się. Zawsze istnieje możliwość ponownej próby.

Przed przystąpieniem do aktualizacji oprogramowania zamknij program Mach3.

Jeśli zainstalujemy nową wersję oprogramowania, ale nie dokonamy aktualizacji aplikacją uploader'a, program Mach3 podczas startu zgłosi niezgodność wersji i komunikacja zostanie przerwana.

Aktualizacja pliku wtyczki (plugin'a)
Plugin jest aktualizowany automatycznie podczas instalacji oprogramowania CSMIO/IP.

Kontrola poprawności aktualizacji
Po zakończonej aktualizacji oprogramowania można ponownie uruchomić program Mach3 i otworzyć okno diagnostyczne. W dolnym pasku powinna widnieć wersja właśnie wgranego oprogramowania.